As you guys might know, some detections take time using Affectiva SDK (linux in my case). For example, the gender recognition might take around 2-3 secs to output a result, and this is correct and it's the expected behavior, just like affectiva mentions:
The ROC score of the classifier is 0.95 and the average length of time taken to reach a decision is 3.4 seconds
So, I was wondering if its possible to reduce this time somehow in the SDK. I understand that this could generate a lot of false positives, but I'm testing an scenario where faces disappear quite quickly. If this is not possible, I might have to change to photo analysis instead...
best!
At the moment there is no way to tune gender detection times with video feeds. The only way to reduce your detection time is to use the Photo Detector:
http://developer.affectiva.com/v3_2/cpp/analyze-photo/
Related
I'm busy with an app for rapid recording of gps positions. I've integrated the records with Google Maps, and it is clear that a few records, though not all of them, are quite far off - up to 200m out measured using Google Earth. This is probably due to the GPS accuracy (maybe the GPS wasn't on for long enough, enough satellites, etc). I can work with this, but I would like to report on the accuracy.
My question is, is there a property that returns the GPS accuracy (perhaps as HDOP / EPE in meters) in the Delphi Firemonkey location sensor for Android, or can one access it in another way? From what I can see this may only be possible on iOS, but then I would like to know where many of the GPS apps (GPS Essentials, Locus Maps) do it? Is it a Firemonkey limitation? The locationsensor.accuracy looks like the value I'm after, but that is an input?
Any advice will be appreciated! All I want to do is set a threshold to warn the user of possible inaccurate readings so he/she can wait a few seconds for better accuracy.
I have tried changing the LocationSensor.accuracy property, but as stated, I want an output from the GPS, not an input.
How to stabilize the RSSI (Received Signal Strength Indicator) of low energy Bluetooth beacons (BLE) for more accurate distance calculation?
We are trying to develop an indoor navigation system and came across this problem where the RSSI is fluctuating so much that, the distance estimation is nowhere near the correct value. We tried using an advance average calculator but to no use,
The device is constantly getting RSSI values, how to filter them, how to get the mean value, I am completely lost, please help.
Can anyone suggest any npm library or point in the right direction, I have been searching for many days but have not gotten anywhere.
FRONT END: ReactNative BACKEND: NODEJS
In addition to the answer of #davidgyoung, we would like to point out that any filtering method is a compromise between quality of noise level reduction and the time-lag introduced by this filtration (depending on the characteristic filtering time you use in your method). As was pointed by #davidgyoung, if you take characteristic filtering period T you will get an average time-lag of about T/2.
Thus, I think the best approach to solve your problem is not to try to find the best filtering method but to make changes on the transmitter’s end itself.
First you can increase the number of signals, transmitter per second (most of the modern beacon allow to do so by using manufacturer applications and API).
Secondly, you can increase beacon's power (which is also usually one of the beacon’s settings), which usually reduces signal-to-noise ratio.
Finally, you can compare beacons from different vendors. At Navigine company we experimented and tested lots of different beacons from multiple manufacturers, and it appears that signal-to-noise ratio can significantly vary among existing manufacturers. From our side, we recommend taking a look at kontakt.io beacons (https://kontakt.io/) as an one of the recognized leaders with 5+ years experience in the area.
It is unlikely that you will find a pre-built package that will do what you want as your needs are pretty specific. You will most likely have to wtite your own filtering code.
A key challenge is to decide the parameters of your filtering, as an indoor nav use case often is impacted by time lag. If you average RSSI over 30 seconds, for example, the output of your filter will effectively give you the RSSI of where a moving object was on average 15 seconds ago. This may be inappropriate for your use case if dealing with moving objects. Reducing the averaging interval to 5 seconds might help, but still introduces time lag while reducing smoothing of noise. A filter called an Auto-Regressive Moving Average Filter might be a good choice, but I only have an implementation in Java so you would need to translate to JavaScript.
Finally, do not expect a filter to solve all your problems. Even if you smooth out the noise on the RSSI you may find that the distance estimates are not accurate enough for your use case. Make sure you understand the limits of what is possible with this technology. I wrote a deep dive on this topic here.
I'm trying to figure out how to correct drift errors introduced by a SLAM method using GPS measurements, I have two point sets in euclidian 3d space taken at fixed moments in time:
The red dataset is introduced by GPS and contains no drift errors, while blue dataset is based on SLAM algorithm, it drifts over time.
The idea is that SLAM is accurate on short distances but eventually drifts, while GPS is accurate on long distances and inaccurate on short ones. So I would like to figure out how to fuse SLAM data with GPS in such way that will take best accuracy of both measurements. At least how to approach this problem?
Since your GPS looks like it is very locally biased, I'm assuming it is low-cost and doesn't use any correction techniques, e.g. that it is not differential. As you probably are aware, GPS errors are not Gaussian. The guys in this paper show that a good way to model GPS noise is as v+eps where v is a locally constant "bias" vector (it is usually constant for a few metters, and then changes more or less smoothly or abruptly) and eps is Gaussian noise.
Given this information, one option would be to use Kalman-based fusion, e.g. you add the GPS noise and bias to the state vector, and define your transition equations appropriately and proceed as you would with an ordinary EKF. Note that if we ignore the prediction step of the Kalman, this is roughly equivalent to minimizing an error function of the form
measurement_constraints + some_weight * GPS_constraints
and that gives you a more straigh-forward, second option. For example, if your SLAM is visual, you can just use the sum of squared reprojection errors (i.e. the bundle adjustment error) as the measurment constraints, and define your GPS constraints as ||x- x_{gps}|| where the x are 2d or 3d GPS positions (you might want to ignore the altitude with low-cost GPS).
If your SLAM is visual and feature-point based (you didn't really say what type of SLAM you were using so I assume the most widespread type), then fusion with any of the methods above can lead to "inlier loss". You make a sudden, violent correction, and augment the reprojection errors. This means that you lose inliers in SLAM's tracking. So you have to re-triangulate points, and so on. Plus, note that even though the paper I linked to above presents a model of the GPS errors, it is not a very accurate model, and assuming that the distribution of GPS errors is unimodal (necessary for the EKF) seems a bit adventurous to me.
So, I think a good option is to use barrier-term optimization. Basically, the idea is this: since you don't really know how to model GPS errors, assume that you have more confidance in SLAM locally, and minimize a function S(x) that captures the quality of your SLAM reconstruction. Note x_opt the minimizer of S. Then, fuse with GPS data as long as it does not deteriorate S(x_opt) more than a given threshold. Mathematically, you'd want to minimize
some_coef/(thresh - S(X)) + ||x-x_{gps}||
and you'd initialize the minimization with x_opt. A good choice for S is the bundle adjustment error, since by not degrading it, you prevent inlier loss. There are other choices of S in the litterature, but they are usually meant to reduce computational time and add little in terms of accuracy.
This, unlike the EKF, does not have a nice probabilistic interpretation, but produces very nice results in practice (I have used it for fusion with other things than GPS too, and it works well). You can for example see this excellent paper that explains how to implement this thoroughly, how to set the threshold, etc.
Hope this helps. Please don't hesitate to tell me if you find inaccuracies/errors in my answer.
I've been using oxyplot for a month now and I'm pretty happy with what it delivers. I'm getting data from an oscilloscope and, after a fast processing, I'm plotting it in real time to a graph.
However, if I compare my application CPU usage to the one provided by the oscilloscope manufacturer, I'm loading a lot more the CPU. Maybe they're using some gpu-based plotter, but I think I can reduce my CPU usage with some modifications.
I'm capturing 10.000 samples per second and adding it to a LineSeries. I'm not plotting all that data, I'm decimating it to a constant number of points, let's say 80 points for a 20 secs measure, so I have 4 points/sec while totally zoomed out and a bit more detail if I zoom in to a specific range.
With the aid of ReSharper, I've noticed that the application is calling a lot of times (I've 6 different plots) the IsValidPoint method (something like 400.000.000 times), which is taking a lot of time.
I think the problem is that, when I add new points to the series, it checks for every point if it is a valid point, instead of the added values only.
Also, it spends a lot of time in the MeasureText/DrawText method.
My question is: is there a way to override those methods and to adapt it to my needs? I'm adding 10.000 new values each second, but the first ones remain the same, so there's no need for re-validate them. Also, the text shown doesn't change.
Thank you in advance for any advice you can give me. Have a good day!
I have been reading up on FFT and Pitch Detection for a while now, but I'm having trouble piecing it all together.
I have worked out that the Accelerate framework is probably the best way to go with this, and I have read the example code from apple to see how to use it for FFTs. What is the input data for the FFT if I wanted to be running the pitch detection in real time? Do I just pass in the audio stream from the microphone? How would I do this?
Also, after I get the FFT output, how can I get the frequency from that? I have been reading everywhere, and can't find any examples or explanations of this?
Thanks for any help.
Frequency and pitch are not the same thing - frequency is a physical quantity, pitch is a psychological percept - they are similar, but there are important differences, which may or may not matter to you, depending on the type of instrument for which you are trying to measure pitch.
You need to read up a little on the various pitch detection algorithms (and on the meaning of pitch itself), decide what algorithm you want to use and only then set about implementing it. See this Wikipedia page for a good overview of pitch and pitch detection (note that you can use FFT for the autocorrelation-based and frequency domain methods).
As for using the FFT to identify peaks in a spectrum and their associated frequencies, there are many questions and answers related to this on SO already, see for example: How do I obtain the frequencies of each value in an FFT?
I have an example implementation of an Autocorrelation function available online for ios 5.1. Look at this post for a link to the implementation AND functions on how to find the nearest note and how to create a string representing the pitch (A, A#, B, B#, etc...)
While the FFT is very useful in many applications, it might not be the most accurate if you're trying to do simple pitch detection. (It can be as accurate, but you have to deal with complex numbers to do a lot of phase calculations)