I have a pandas DataFrame with customers ID and columns related to months (1,2,3....)
I have a column with the number of months since last purchase
I am using the following to populate the relevant months columns
dt.loc[dt.month == 1, '1'] = 1
dt.loc[dt.month == 2, '2'] = 1
dt.loc[dt.month == 3, '3'] = 1
etc,
How can I populate the columns in a better way to avoid creating 12 statements?
pd.get_dummies
pd.get_dummies(dt.month)
Consider the dataframe dt
dt = pd.DataFrame(dict(
month=np.random.randint(1, 13, (10)),
a=range(10)
))
a month
0 0 8
1 1 3
2 2 8
3 3 11
4 4 3
5 5 4
6 6 1
7 7 5
8 8 3
9 9 11
Add columns like this
dt.join(pd.get_dummies(dt.month))
a month 1 3 4 5 8 11
0 0 8 0 0 0 0 1 0
1 1 3 0 1 0 0 0 0
2 2 8 0 0 0 0 1 0
3 3 11 0 0 0 0 0 1
4 4 3 0 1 0 0 0 0
5 5 4 0 0 1 0 0 0
6 6 1 1 0 0 0 0 0
7 7 5 0 0 0 1 0 0
8 8 3 0 1 0 0 0 0
9 9 11 0 0 0 0 0 1
If you wanted the column names to be strings
dt.join(pd.get_dummies(dt.month).rename(columns='month {}'.format))
a month month 1 month 3 month 4 month 5 month 8 month 11
0 0 8 0 0 0 0 1 0
1 1 3 0 1 0 0 0 0
2 2 8 0 0 0 0 1 0
3 3 11 0 0 0 0 0 1
4 4 3 0 1 0 0 0 0
5 5 4 0 0 1 0 0 0
6 6 1 1 0 0 0 0 0
7 7 5 0 0 0 1 0 0
8 8 3 0 1 0 0 0 0
9 9 11 0 0 0 0 0 1
Related
For the following dataframe:
import pandas as pd
df=pd.DataFrame({'list_A':[3,3,3,3,3,\
2,2,2,2,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4]})
How can 'list_A' be manipulated to give 'list_B'?
Desired output:
list_A
list_B
0
3
1
1
3
1
2
3
1
3
3
0
4
2
1
5
2
1
6
2
0
7
2
0
8
4
1
9
4
1
10
4
1
11
4
1
12
4
0
13
4
0
14
4
0
15
4
0
16
4
0
As you can see, if List_A has the number 3 - then the first 3 values of List_B are '1' and then the value of List_B changes to '0', until List_A changes value again.
GroupBy.cumcount
df['list_B'] = df['list_A'].gt(df.groupby('list_A').cumcount()).astype(int)
print(df)
Output
list_A list_B
0 3 1
1 3 1
2 3 1
3 3 0
4 3 0
5 2 1
6 2 1
7 2 0
8 2 0
9 2 0
10 2 0
11 2 0
12 4 1
13 4 1
14 4 1
15 4 1
16 4 0
17 4 0
18 4 0
19 4 0
20 4 0
21 4 0
22 4 0
23 4 0
EDIT
blocks = df['list_A'].ne(df['list_A'].shift()).cumsum()
df['list_B'] = df['list_A'].gt(df.groupby(blocks).cumcount()).astype(int)
I’ve a pd df consists three columns: ID, t, and ind1.
import pandas as pd
dat = {'ID': [1,1,1,1,2,2,2,3,3,3,3,4,4,4,5,5,6,6,6],
't': [0,1,2,3,0,1,2,0,1,2,3,0,1,2,0,1,0,1,2],
'ind1' : [1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0]
}
df = pd.DataFrame(dat, columns = ['ID', 't', 'ind1'])
print (df)
What I need to do is to create a new column (res) that
for all ID with ind1==0, then res is zero.
for all ID with
ind1==1 and if t==max(t) (group by ID), then res = 1, otherwise zero.
Here’s anticipated output
Check with groupby with idxmax , then where with transform all
df['res']=df.groupby('ID').t.transform('idxmax').where(df.groupby('ID').ind1.transform('all')).eq(df.index).astype(int)
df
Out[160]:
ID t ind1 res
0 1 0 1 0
1 1 1 1 0
2 1 2 1 0
3 1 3 1 1
4 2 0 0 0
5 2 1 0 0
6 2 2 0 0
7 3 0 0 0
8 3 1 0 0
9 3 2 0 0
10 3 3 0 0
11 4 0 1 0
12 4 1 1 0
13 4 2 1 1
14 5 0 1 0
15 5 1 1 1
16 6 0 0 0
17 6 1 0 0
18 6 2 0 0
This works on the knowledge that the ID column is sorted :
cond1 = df.ind1.eq(0)
cond2 = df.ind1.eq(1) & (df.t.eq(df.groupby("ID").t.transform("max")))
df["res"] = np.select([cond1, cond2], [0, 1], 0)
df
ID t ind1 res
0 1 0 1 0
1 1 1 1 0
2 1 2 1 0
3 1 3 1 1
4 2 0 0 0
5 2 1 0 0
6 2 2 0 0
7 3 0 0 0
8 3 1 0 0
9 3 2 0 0
10 3 3 0 0
11 4 0 1 0
12 4 1 1 0
13 4 2 1 1
14 5 0 1 0
15 5 1 1 1
16 6 0 0 0
17 6 1 0 0
18 6 2 0 0
Use groupby.apply:
df['res'] = (df.groupby('ID').apply(lambda x: x['ind1'].eq(1)&x['t'].eq(x['t'].max()))
.astype(int).reset_index(drop=True))
print(df)
ID t ind1 res
0 1 0 1 0
1 1 1 1 0
2 1 2 1 0
3 1 3 1 1
4 2 0 0 0
5 2 1 0 0
6 2 2 0 0
7 3 0 0 0
8 3 1 0 0
9 3 2 0 0
10 3 3 0 0
11 4 0 1 0
12 4 1 1 0
13 4 2 1 1
14 5 0 1 0
15 5 1 1 1
16 6 0 0 0
17 6 1 0 0
18 6 2 0 0
I have a list of events and i want to display on a graph how many happens per hour each day of the week as shown below:
Example of the graph i want
(each line is a day, x axis is the time of the day, y axis is the number of events)
As i am new to Panda i am not sure what's the best way to do it but here is my way:
x = [(rts[k].getDay(), rts[k].getHour(), 1) for k in rts]
df = pd.DataFrame(x[:30]) # Subset of 30 events
dfGrouped = df.groupby([0, 1]).sum() # Group them by day and hour
#Format to display
pd.DataFrame(np.random.randn(24, 7), index=range(0,24), columns=['Mo', 'Tu', 'We', 'Th', 'Fr', 'Sa', 'Su'])
Question is, how can i go from my dataframe with data grouped to a matrix 24x7 as required to display ?
I tried as_matrix but that give me only a one dimensional array, while i want the index of my dataframe to be the index in my matrix.
print(df)
2
0 1
0 19 1
23 1
1 10 2
18 3
22 1
2 17 1
3 8 2
9 3
11 3
13 1
19 1
4 7 1
9 1
14 1
15 1
18 1
5 1 2
7 1
13 1
19 1
6 12 1
Thanks for your help :)
Antoine
I think you need unstack for reshape data, then rename columns names by dict and if necessary add missing hours to index by reindex_axis:
df1 = df.groupby([0, 1])[2].sum().unstack(0, fill_value=0)
#set columns names
df = pd.DataFrame(x[:30], columns = ['days','hours','val'])
d = {0: 'Mo', 1: 'Tu', 2: 'We', 3: 'Th', 4: 'Fr', 5: 'Sa', 6: 'Su'}
df1 = df.groupby(['days', 'hours'])['val'].sum().unstack(0, fill_value=0)
df1 = df1.rename(columns=d).reindex_axis(range(24), fill_value=0)
print (df1)
days Mo Tu We Th Fr Sa Su
hours
0 0 0 0 0 0 0 0
1 0 0 0 0 0 2 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 1 1 0
8 0 0 0 2 0 0 0
9 0 0 0 3 1 0 0
10 0 2 0 0 0 0 0
11 0 0 0 3 0 0 0
12 0 0 0 0 0 0 1
13 0 0 0 1 0 1 0
14 0 0 0 0 1 0 0
15 0 0 0 0 1 0 0
16 0 0 0 0 0 0 0
17 0 0 1 0 0 0 0
18 0 3 0 0 1 0 0
19 1 0 0 1 0 1 0
20 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0
22 0 1 0 0 0 0 0
23 1 0 0 0 0 0 0
I am new to Python. I have created dummy columns on categorical column using pandas get_dummies. How to create dummy columns on ordinal column (say column Rating has values 1,2,3...,10)
Consider the dataframe df
df = pd.DataFrame(dict(Cats=list('abcdcba'), Ords=[3, 2, 1, 0, 1, 2, 3]))
df
Cats Ords
0 a 3
1 b 2
2 c 1
3 d 0
4 c 1
5 b 2
6 a 3
pd.get_dummies
works the same on either column
with df.Cats
pd.get_dummies(df.Cats)
a b c d
0 1 0 0 0
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1
4 0 0 1 0
5 0 1 0 0
6 1 0 0 0
with df.Ords
0 1 2 3
0 0 0 0 1
1 0 0 1 0
2 0 1 0 0
3 1 0 0 0
4 0 1 0 0
5 0 0 1 0
6 0 0 0 1
with both
pd.get_dummies(df)
Ords Cats_a Cats_b Cats_c Cats_d
0 3 1 0 0 0
1 2 0 1 0 0
2 1 0 0 1 0
3 0 0 0 0 1
4 1 0 0 1 0
5 2 0 1 0 0
6 3 1 0 0 0
Notice that it split out Cats but not Ords
Let's expand on this by adding another Cats2 column and calling pd.get_dummies
pd.get_dummies(df.assign(Cats2=df.Cats)))
Ords Cats_a Cats_b Cats_c Cats_d Cats2_a Cats2_b Cats2_c Cats2_d
0 3 1 0 0 0 1 0 0 0
1 2 0 1 0 0 0 1 0 0
2 1 0 0 1 0 0 0 1 0
3 0 0 0 0 1 0 0 0 1
4 1 0 0 1 0 0 0 1 0
5 2 0 1 0 0 0 1 0 0
6 3 1 0 0 0 1 0 0 0
Interesting, it splits both object columns but not the numeric one.
I am trying to create a heat map from a DataFrame (df) of IDs (rows) and Positions (columns) at which a motif is possible. If the motif is present the value of the table is 1 and 0 if it is not present. Such as:
ID Position 1 2 3 4 5 6 7 8 9 10 ...etc
A 0 1 0 0 0 1 0 0 0 1
B 1 0 1 0 1 0 0 1 0 0
C 0 0 0 1 0 0 1 0 1 0
D 1 0 1 0 0 0 1 0 1 0
I then multiply this matrix by itself to find the number of times the motifs present co-occur with motifs at other positions using the code:
df.T.dot(df)
To obtain the Data Frame:
POS 1 2 3 4 5 6 7 8 9 10 ...
1 2 0 2 0 1 0 1 1 1 0
2 0 1 0 0 0 1 0 0 0 1
3 2 0 2 0 1 0 1 1 1 0
4 0 0 0 1 0 0 1 0 1 0
5 1 0 1 0 1 0 0 1 0 0
6 0 1 0 0 0 1 0 0 0 1
7 1 0 1 1 0 0 2 0 2 0
8 1 0 1 0 1 0 0 1 0 0
9 1 0 1 1 0 0 2 0 2 0
10 0 1 0 0 0 1 0 0 0 1
...
Which is symmetrical with the diagonal, however when I try to create the Heat Map using
pylab.pcolor(df)
It gives me an asymmetrical map that does not seem to be representing the dotted matrix. I don't have enough reputation to post an image though.
Does anyone know why this might be occurring? Thanks