sum only on certain dimension - sum

I have a Fortran 90array (matrix) like:
REAL(8),DIMENSION(Xmax, Ymax, Zmax, Xmax, Ymax, Zmax) :: Mat
I read through my matrix in this way:
DO X1=1,Xmax
Do Y1=1,Ymax
DO Z1=1,Zmax
DO Xv=1,Xmax
Do Yv=1,Ymax
DO Zv=1,Zmax
Mat(X1, Y1, Z1, Xv, Yv, Zv)
END DO
END DO
END DO
END DO
END DO
END DO
I would like to create a new matrix NewMat (dimension(Xmax, Ymax, Zmax) only) which will contain for each (Xv, Yv, Zv) the sum of all respectively (X1, Y1, Z1) from my initial matrix.
My question is: Do I need to iterate to sum? Or is there a way to use some function? what would be more efficient?

You're almost certainly looking for the intrinsic sum function which can be used to reduce an array (by addition) from rank n to rank n-1. So the expression
sum(mat, dim=6)
will 'flatten' the 6th dimension of mat. I'm not entirely sure that I understand exactly what you are trying to do, but the assignment
newmat = sum(sum(sum(mat, dim=6), dim=5), dim=4)
might satisfy your needs. I haven't got Fortran on this machine, and if I had I'd probably balk at setting up a rank-6 array to test it. So, if it isn't quite what you want fiddle around until you get it..
This probably isn't any faster than nesting loops, and it's arguably harder to read, but it does look like it was written by someone who understands modern Fortran's array operations.

Related

Faster way of adding up outer products across columns of matrix

sum_v=np.zeros([d,d])
for i in range(num):
sum_v+=np.outer(v[:,i],v[:,i])
Faster way of adding up outer products across columns of matrix, where matrix is v.
Thus, faster way of adding up matrices when taking outer product along columns of another matrix?
Use matrix-multiplication with its transposed version -
v.dot(v.T)
Explanation : You are basically performing v[:,None,:]*v[None,:,:] (if you print the outer product result at each iteration and study it) and then sum-reducing along the last axis of the product. Stepping back and looking from the input array's point of view, we are performing element-wise multiplication between two versions of v, such that the last axis would be kept aligned and finally sum-reduced, while the leftover two axes would spread_out as two axes of the final result. That sum-reduction is basically matrix-multiplication between v and its transpose.
If you're familiar with Einstein summation notation, np.einsum can make visualization easier:
sum_v = np.einsum('ik,jk->ij', v, v)
which is the same as:
sum_v = np.einsum('ik,kj->ij`, v, v.T)
As #Divakar points out, np.einsum('ik,kj->ij', ...) is functionally equivalent to (and slower than) np.dot(...)

Fitting curves to a set of points

Basically, I have a set of up to 100 co-ordinates, along with the desired tangents to the curve at the first and last point.
I have looked into various methods of curve-fitting, by which I mean an algorithm with takes the inputted data points and tangents, and outputs the equation of the cure, such as the gaussian method and interpolation, but I really struggled understanding them.
I am not asking for code (If you choose to give it, thats acceptable though :) ), I am simply looking for help into this algorithm. It will eventually be converted to Objective-C for an iPhone app, if that changes anything..
EDIT:
I know the order of all of the points. They are not too close together, so passing through all points is necessary - aka interpolation (unless anyone can suggest something else). And as far as I know, an algebraic curve is what I'm looking for. This is all being done on a 2D plane by the way
I'd recommend to consider cubic splines. There is some explanation and code to calculate them in plain C in Numerical Recipes book (chapter 3.3)
Most interpolation methods originally work with functions: given a set of x and y values, they compute a function which computes a y value for every x value, meeting the specified constraints. As a function can only ever compute a single y value for every x value, such an curve cannot loop back on itself.
To turn this into a real 2D setup, you want two functions which compute x resp. y values based on some parameter that is conventionally called t. So the first step is computing t values for your input data. You can usually get a good approximation by summing over euclidean distances: think about a polyline connecting all your points with straight segments. Then the parameter would be the distance along this line for every input pair.
So now you have two interpolation problem: one to compute x from t and the other y from t. You can formulate this as a spline interpolation, e.g. using cubic splines. That gives you a large system of linear equations which you can solve iteratively up to the desired precision.
The result of a spline interpolation will be a piecewise description of a suitable curve. If you wanted a single equation, then a lagrange interpolation would fit that bill, but the result might have odd twists and turns for many sets of input data.

Maximizing in mathematica with multiple maxima

I'm trying to compute the maxima of some function of one variable (something like this:)
(which is calculated from a non-trivial convolution, so, no, I don't have an expression for it)
Using the command:
NMaximize[{f[x], 0 < x < 1}, x, AccuracyGoal -> 4, PrecisionGoal -> 4]
(I'm not that worried about super accuracy, a rough estimate of 10^-4 is already enough)
The result of this is x* = 0.55, which is not what should be. (i.e., it is picking the third peak).
Is there any way of telling mathematica that the global maxima is the first one when counting from x = 0 (I know this is always true), or make mathematica search with a better approach? (Notice, I don't want things like Stimulated Annealing approach; each evaluation is very costly!)
Thanks very much!
Try FindMaximum with a starting point of 0 or some similarly small value.

Optimize MATLAB code (nested for loop to compute similarity matrix)

I am computing a similarity matrix based on Euclidean distance in MATLAB. My code is as follows:
for i=1:N % M,N is the size of the matrix x for whose elements I am computing similarity matrix
for j=1:N
D(i,j) = sqrt(sum(x(:,i)-x(:,j)).^2)); % D is the similarity matrix
end
end
Can any help with optimizing this = reducing the for loops as my matrix x is of dimension 256x30000.
Thanks a lot!
--Aditya
The function to do so in matlab is called pdist. Unfortunately it is painfully slow and doesnt take Matlabs vectorization abilities into account.
The following is code I wrote for a project. Let me know what kind of speed up you get.
Qx=repmat(dot(x,x,2),1,size(x,1));
D=sqrt(Qx+Qx'-2*x*x');
Note though that this will only work if your data points are in the rows and your dimensions the columns. So for example lets say I have 256 data points and 100000 dimensions then on my mac using x=rand(256,100000) and the above code produces a 256x256 matrix in about half a second.
There's probably a better way to do it, but the first thing I noticed was that you could cut the runtime in half by exploiting the symmetry D(i,j)==D(i,j)
You can also use the function norm(x(:,i)-x(:,j),2)
I think this is what you're looking for.
D=zeros(N);
jIndx=repmat(1:N,N,1);iIndx=jIndx'; %'# fix SO's syntax highlighting
D(:)=sqrt(sum((x(iIndx(:),:)-x(jIndx(:),:)).^2,2));
Here, I have assumed that the distance vector, x is initalized as an NxM array, where M is the number of dimensions of the system and N is the number of points. So if your ordering is different, you'll have to make changes accordingly.
To start with, you are computing twice as much as you need to here, because D will be symmetric. You don't need to calculate the (i,j) entry and the (j,i) entry separately. Change your inner loop to for j=1:i, and add in the body of that loop D(j,i)=D(i,j);
After that, there's really not much redundancy left in what that code does, so your only room left for improvement is to parallelize it: if you have the Parallel Computing Toolbox, convert your outer loop to a parfor and before you run it, say matlabpool(n), where n is the number of threads to use.

Normal Distribution function

edit
So based on the answers so far (thanks for taking your time) I'm getting the sense that I'm probably NOT looking for a Normal Distribution function. Perhaps I'll try to re-describe what I'm looking to do.
Lets say I have an object that returns a number of 0 to 10. And that number controls "speed". However instead of 10 being the top speed, I need 5 to be the top speed, and anything lower or higher would slow down accordingly. (with easing, thus the bell curve)
I hope that's clearer ;/
-original question
These are the times I wish I remembered something from math class.
I'm trying to figure out how to write a function in obj-C where I define the boundries, ex (0 - 10) and then if x = foo y = ? .... where x runs something like 0,1,2,3,4,5,6,7,8,9,10 and y runs 0,1,2,3,4,5,4,3,2,1,0 but only on a curve
Something like the attached image.
I tried googling for Normal Distribution but its way over my head. I was hoping to find some site that lists some useful algorithms like these but wasn't very successful.
So can anyone help me out here ? And if there is some good sites which shows useful mathematical functions, I'd love to check them out.
TIA!!!
-added
I'm not looking for a random number, I'm looking for.. ex: if x=0 y should be 0, if x=5 y should be 5, if x=10 y should be 0.... and all those other not so obvious in between numbers
alt text http://dizy.cc/slider.gif
Okay, your edit really clarifies things. You're not looking for anything to do with the normal distribution, just a nice smooth little ramp function. The one Paul provides will do nicely, but is tricky to modify for other values. It can be made a little more flexible (my code examples are in Python, which should be very easy to translate to any other language):
def quarticRamp(x, b=10, peak=5):
if not 0 <= x <= b:
raise ValueError #or return 0
return peak*x*x*(x-b)*(x-b)*16/(b*b*b*b)
Parameter b is the upper bound for the region you want to have a slope on (10, in your example), and peak is how high you want it to go (5, in the example).
Personally I like a quadratic spline approach, which is marginally cheaper computationally and has a different curve to it (this curve is really nice to use in a couple of special applications that don't happen to matter at all for you):
def quadraticSplineRamp(x, a=0, b=10, peak=5):
if not a <= x <= b:
raise ValueError #or return 0
if x > (b+a)/2:
x = a + b - x
z = 2*(x-a)/b
if z > 0.5:
return peak * (1 - 2*(z-1)*(z-1))
else:
return peak * (2*z*z)
This is similar to the other function, but takes a lower bound a (0 in your example). The logic is a little more complex because it's a somewhat-optimized implementation of a piecewise function.
The two curves have slightly different shapes; you probably don't care what the exact shape is, and so could pick either. There are an infinite number of ramp functions meeting your criteria; these are two simple ones, but they can get as baroque as you want.
The thing you want to plot is the probability density function (pdf) of the normal distribution. You can find it on the mighty Wikipedia.
Luckily, the pdf for a normal distribution is not difficult to implement - some of the other related functions are considerably worse because they require the error function.
To get a plot like you showed, you want a mean of 5 and a standard deviation of about 1.5. The median is obviously the centre, and figuring out an appropriate standard deviation given the left & right boundaries isn't particularly difficult.
A function to calculate the y value of the pdf given the x coordinate, standard deviation and mean might look something like:
double normal_pdf(double x, double mean, double std_dev) {
return( 1.0/(sqrt(2*PI)*std_dev) *
exp(-(x-mean)*(x-mean)/(2*std_dev*std_dev)) );
}
A normal distribution is never equal to 0.
Please make sure that what you want to plot is indeed a
normal distribution.
If you're only looking for this bell shape (with the tangent and everything)
you can use the following formula:
x^2*(x-10)^2 for x between 0 and 10
0 elsewhere
(Divide by 125 if you need to have your peek on 5.)
double bell(double x) {
if ((x < 10) && (x>0))
return x*x*(x-10.)*(x-10.)/125.;
else
return 0.;
}
Well, there's good old Wikipedia, of course. And Mathworld.
What you want is a random number generator for "generating normally distributed random deviates". Since Objective C can call regular C libraries, you either need a C-callable library like the GNU Scientific Library, or for this, you can write it yourself following the description here.
Try simulating rolls of dice by generating random numbers between 1 and 6. If you add up the rolls from 5 independent dice rolls, you'll get a surprisingly good approximation to the normal distribution. You can roll more dice if you'd like and you'll get a better approximation.
Here's an article that explains why this works. It's probably more mathematical detail than you want, but you could show it to someone to justify your approach.
If what you want is the value of the probability density function, p(x), of a normal (Gaussian) distribution of mean mu and standard deviation sigma at x, the formula is
p(x) = exp( ((x-mu)^2)/(2*sigma^2) ) / (sigma * 2 * sqrt(pi))
where pi is the area of a circle divided by the square of its radius (approximately 3.14159...). Using the C standard library math.h, this is:
#include <math>
double normal_pdf(double x, double mu, double sigma) {
double n = sigma * 2 * sqrt(M_PI); //normalization factor
p = exp( -pow(x-mu, 2) / (2 * pow(sigma, 2)) ); // unnormalized pdf
return p / n;
}
Of course, you can do the same in Objective-C.
For reference, see the Wikipedia or MathWorld articles.
It sounds like you want to write a function that yields a curve of a specific shape. Something like y = f(x), for x in [0:10]. You have a constraint on the max value of y, and a general idea of what you want the curve to look like (somewhat bell-shaped, y=0 at the edges of the x range, y=5 when x=5). So roughly, you would call your function iteratively with the x range, with a step that gives you enough points to make your curve look nice.
So you really don't need random numbers, and this has nothing to do with probability unless you want it to (as in, you want your curve to look like a the outline of a normal distribution or something along those lines).
If you have a clear idea of what function will yield your desired curve, the code is trivial - a function to compute f(x) and a for loop to call it the desired number of times for the desired values of x. Plot the x,y pairs and you're done. So that's your algorithm - call a function in a for loop.
The contents of the routine implementing the function will depend on the specifics of what you want the curve to look like. If you need help on functions that might return a curve resembling your sample, I would direct you to the reading material in the other answers. :) However, I suspect that this is actually an assignment of some sort, and that you have been given a function already. If you are actually doing this on your own to learn, then I again echo the other reading suggestions.
y=-1*abs(x-5)+5