I am reading tutorials about TensorFlow visualization and found out Tensorboard. I would like to know how can I visualize for example, Iris dataset taken from UCI Machine Learning repository. I have been able to run a specified port on localhost which shows TensorBoard, but do not know how to visualize a locally taken dataset there. I searched on google but really could not find how to do. Could you help me, please ?
If i understand you correctly then you wish to use tf.summary.image. The documentation is here: https://www.tensorflow.org/api_docs/python/tf/summary/image
Some example usage from my code is:
x_pl=tf.placeholder(tf.float32, [None,height,width,channels], name="ImageIn")
tf.summary.image('input', x_pl, 10)
x_pl is where I feed my image data in.
In my cummary declaration I say that I want to create a summary called 'input' and to take 10 images from x_pl.
Read the summary-writer example/tutorial here: https://www.tensorflow.org/get_started/summaries_and_tensorboard
You will need to merge your summaries:
merged = tf.summary.merge_all()
You will need to declare a summary-writer a bit like this:
train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train',sess.graph)
See the above tutorial/example to understand how Tensorboard works. Not that you will want to replace the summaries with image summaries for your purposes.
Related
I'm trying to reload or access the Keras-Tuner Trials after the Tuner's search has completed for inspecting the results. I'm not able to find any documentation or answers related to this issue.
For example, I set up BayesianOptimization to search for the best hyper-parameters as follows:
## Build Hyper Parameter Search
tuner = kt.BayesianOptimization(build_model,
objective='val_categorical_accuracy',
max_trials=10,
directory='kt_dir',
project_name='lstm_dense_bo')
tuner.search((X_train_seq, X_train_num), y_train_cat,
epochs=30,
batch_size=64,
validation_data=((X_val_seq, X_val_num), y_val_cat),
callbacks=[callbacks.EarlyStopping(monitor='val_loss', patience=3,
restore_best_weights=True)])
I see this creates trial files in the directory kt_dir with project name lstm_dense_bo such as below:
Now, if I restart my Jupyter kernel, how can I reload these trials into a Tuner object and subsequently inspect the best model or the best hyperparameters or the best trial?
I'd very much appreciate your help. Thank you
I was trying to do the same thing. I was looking into the keras docs for an easier way than this but could not find one - so if any other SO-ers have a better idea, please let us know!
Load the previous tuner. Make sure overwrite=False or else you'll delete your trials.
workdir = "mlp_202202151345"
obj = "val_recall"
tuner = kt.Hyperband(
hypermodel=build_model,
metrics=metrics,
objective=kt.Objective(obj, direction="max"),
executions_per_trial=1,
overwrite=False,
directory=workdir,
project_name="keras_tuner",
)
Look for a trial you want to load. Note that TensorBoard works really well for this. In this example, I'm loading 1a38ebaba07b77501999cb1c4ab9413e.
Here's the part that I could not find in Keras docs. This might be dependent on the tuner you use (I am using Hyperband):
tuner.oracle.get_trial('1a38ebaba07b77501999cb1c4ab9413e')
Returns a Trial object (also could not find in the docs). The Trial object has a hyperparameters attribute that will return that trial's hyperparameters. Now:
tuner.hypermodel.build(trial.hyperparameters)
Gives you the trial's model for training, evaluation, predictions, etc.
NOTE This seems convuluted and hacky, would love to see a better way.
j7skov has correctly mentioned that you need to reload previous tuner and set the parameter overwrite=False(so that tuner will not overwrite already generated trials).
Further if you want to load first K best models then we need to use tuner's get_best_models method as below
# This will load 10 best hyper tuned models with the weights
# corresponding to their best checkpoint (at the end of the best epoch of best trial).
best_model_count = 10
bo_tuner_best_models = tuner.get_best_models(num_models=best_model_count)
Then you can access a specific best model as below
best_model_id = 7
model = bo_tuner_best_models[best_model_id]
This method is for querying the models trained during the search. For best performance, it is recommended to retrain your Model on the full dataset using the best hyperparameters found during search, which can be obtained using tuner.get_best_hyperparameters().
tuner_best_hyperparameters = tuner.get_best_hyperparameters(num_trials=best_model_count)
best_hp = tuner_best_hyperparameters[best_model_id]
model = tuner.hypermodel.build(best_hp)
If you want to just display hyperparameters for the K best models then use tuner's results_summary method as below
tuner.results_summary(num_trials=best_model_count)
For further reference visit this page.
Inspired by j7skov, I found that the models can be reloaded
by manipulating tuner.oracle.trials and tuner.load_model.
By assigning tuner.oracle.trials to a variable, we can find that it is a dict object containing all relavant trials in the tuning process.
The keys of the dictionary are the trial_id, and the values of the
dictionary are the instance of the Trial object.
Alternatively, we can return the best few trials by using tuner.oracle.get_best_trials.
To inspect the hyperparameters of the trial, we can use the summary method of the instance.
To load the model, we can pass the trial instance to tuner.load_model.
Beware that different versions can lead to incompatibilities.
For example the directory structure is a little different between keras-tuner==1.0 and keras-tuner==1.1 as far as I know.
Using your example, the working flow may be summarized as follows.
# Recreate the tuner object
tuner = kt.BayesianOptimization(build_model,
objective='val_categorical_accuracy',
max_trials=10,
directory='kt_dir',
project_name='lstm_dense_bo',
overwrite=False)
# Return all trials from the oracle
trials = tuner.oracle.trials
# Print out the ID and the score of all trials
for trial_id, trial in trials.items():
print(trial_id, trial.score)
# Return best 5 trials
best_trials = tuner.oracle.get_best_trials(num_trials=5)
for trial in best_trials:
trial.summary()
model = tuner.load_model(trial)
# Do some stuff to the model
using
tuner = kt.BayesianOptimization(build_model,
objective='val_categorical_accuracy',
max_trials=10,
directory='kt_dir',
project_name='lstm_dense_bo')
will load the tuner again.
I'm a newbie of deep learning utilizing tensorflow.
I want to make the own model that predict my custom images that are constructed on the grayscale.
But the only thing that I know is MNIST example utilizing tensorflow.
So I used a converting module from this repo but the error had been occurred such as this.
Images like to convert was constructed as 80,680 of training images, 20,170 of test images.
I really don't know why this error has occurred.
Please help me.
The script you're referring to doesn't correctly set up the headers for the MNIST format. It was addressed in a previous Github issue that has since been deleted, but my modification:
header = array('B')
header.extend([0,0,8,1,0,0])
header.append(int('0x'+hexval[2:][:2],16))
header.append(int('0x'+hexval[2:][2:],16))
to
header = array('B')
header.extend([0,0,8,1])
header.append(int('0x'+hexval[2:][:2],16))
header.append(int('0x'+hexval[4:][:2],16))
header.append(int('0x'+hexval[6:][:2],16))
header.append(int('0x'+hexval[8:][:2],16))
should get it working. Hope this helps!
I want to reload some of my model variables with the saved weight in the chheckpoint and then export it to the tflite file.
The question is a bit tricky without see code, so I made this Colab jupyter notebook with the complete code to explain it better (All code is working, you can actually copy in a new collab and change if you want):
https://colab.research.google.com/drive/1wSor4CxEz36LgElVi4y_N8uiSt4-j9b2#scrollTo=XKBQzoW_wd4A
I got it working but with two issues:
The exported .tflite file is like 3Ks, so I do not believe it is the entire model with the weights in it. Only the input is an image of 128x128x3, one weight for each is more than 3K.
When I finally import the model in Android, I have this error: "Didn't find custom op for name 'VariableV2' /n Didn't find custom op for name 'ReorderAxes' /n Registration failed."
Maybe the last error is cause the save/restore operations? They look like are there when I save the graph definition.
Thanks in advance.
I realize my problem.. I'm trying to convert to TFLITE a model without previously freezing it, TFLITE do not allow "VariableV2" nodes cause they should not be there..
All the problem is corrected freezing the model like this:
output_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph.as_graph_def(), ["output"])
I lost some time looking for that, hope it helps.
I've read some questions on stackoverflow about attention-ocr, and most of them are about the implementation detail of a specific step. What I wanted to know is the pipeline for us to fine-tune this model on our own dataset.
As far as I know, the steps should be:
0) Should we first download FSNS dataset?? I tried to bypass this step and try running inference on just one image, but it always give me error:"ImportError: No module named 'fsns". So I wonder if this error will go away once I set my own dataset up.
1) Store our data in the same format as FSNS. (Links on this topic: How to create dataset in the same format as the FSNS dataset?, how to create cutomized dataset for google tensorflow attention ocr? )
2) Download the pre-trained checkpoint(http://download.tensorflow.org/models/attention_ocr_2017_08_09.tar.gz)
3) Somehow modify the 'model.py' to fit your own purpose.
4) Somehow modify the 'train.py' to train your own module using tensorflow serving.
I am still on the early stage (creating own dataset) on this project now, and confused on how to do it and what's the next stage.
The error was caused by incorrect version of Python. They should be run with Python 2, and you can just change the 'import' sentence to solve this error. Try to change the 'import fsns' to 'from datasets import fsns'.
im getting started with tensorflow und using retrain.py to teach it some new categories - this works well - however i have some questions:
In the comments of retrain.py it says:
"This produces a new model file that can be loaded and run by any TensorFlow
program, for example the label_image sample code"
however I havent found where this new model file is saved to ?
also: it does contain the whole model, right ? not just the retrained part ?
Thanks for clearing this up
1)I think you may want to save the new model.
When you want to save a model after some process, you can use
saver.save(sess, 'directory/model-name', *optional-arg).
Check out https://www.tensorflow.org/api_docs/python/tf/train/Saver
If you change model-name by epoch or any measure you would like to use, you can save the new model(otherwise, it may overlap with previous models saved).
You can find the model saved by searching 'checkpoint', '.index', '.meta'.
2)Saving the whole model or just part of it?
It's the part you need to learn bunch of ideas on tf.session and savers. You can save either the whole or just part, it's up to you. Again, start from the above link. The moral is that you put the variables you would like to save in a list quoted as 'var_list' in the link, and you can save only for them. When you call them back, you now also need to specify which variables in your model correspond to the variables in the loaded variables.
While running retrain.py you can give --output_graph and --output_labels parameters which specify the location to save graph (default is /tmp/output_graph.pb) and the labels as well. You can change those as per your requirements.