How to implement a custom op that uses intermediate data from the forward pass to compute its gradient faster in tensorflow? - tensorflow

I am trying to implement a custom op in TensorFlow that represents a computationally heavy transfer function computed in C++ using Eigen on GPU. I would like to accelerate the computation of the gradient (also in C++ for speed) of the op by re-using some of the intermediate values obtained while computing its output.
In the source code of tensorflow/core/kernels/cwise_ops_gradients.h we see that many functions already do that to some extent by re-using the output of the op to compute its derivative. Here is the example of the sigmoid:
template <typename T>
struct scalar_sigmoid_gradient_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_sigmoid_gradient_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const T
operator()(const T& output, const T& output_gradient) const {
return output_gradient * output * (T(1) - output);
}
However, I don't see how I can access something else than just the output, for example some other values I stored during the forward pass, to accelerate the computation of my derivative.
I've thought about adding a second output to my op, with all the data required for the derivative, and use it for the computation of the gradient of the actual output, but I've not managed to make it work yet. I'm not sure if it could work in principle.
Another approach I imagined is to manually modify the full graph (forward and backprop) to shortcut an output from the op directly towards its derivative block. I'm not sure how to do it.
Otherwise, there may be a data storage scheme I'm not aware of and that would allow me to store data in the forward pass of an op and retrieve it during gradient computation.
Thank you for your attention, I would greatly appreciate any ideas.
D

Related

Customized aggregation algorithm for gradient updates in tensorflow federated

I have been trying to implement this paper . Basically what I want to do is sum the per client loss and compare the same with previous epoch. Then for each constituent layer of the model compare the KL divergence between the weights of the server and the client model to get the layer specific parameter updates and then doing a softmax and to decide whether an adaptive update or a normal FedAvg approach is needed.
The algorithm is as follows-
FedMed
I tried to make use of the code here to build a custom federated avg process. I got the basic understanding that there are some tf.computations and some tff.computations which are involved. I get that I need to make changes in the orchestration logic in the run_one_round function and basically manipulate the client outputs to do adaptive averaging instead of the vanilla federated averaging. The client_update tf.computation function basically returns all the values that I need i.e the weights_delta (can be used for client based model weights), model_output(which can be used to calculate the loss).
But I am not sure where exactly I should make the changes.
#tff.federated_computation(federated_server_state_type,
federated_dataset_type)
def run_one_round(server_state, federated_dataset):
server_message = tff.federated_map(server_message_fn, server_state)
server_message_at_client = tff.federated_broadcast(server_message)
client_outputs = tff.federated_map(
client_update_fn, (federated_dataset, server_message_at_client))
weight_denom = client_outputs.client_weight
# todo
# instead of using tff.federated_mean I wish to do a adaptive aggregation based on the client_outputs.weights_delta and server_state model
round_model_delta = tff.federated_mean(
client_outputs.weights_delta, weight=weight_denom)
#client_outputs.weights_delta has all the client model weights.
#client_outputs.client_weight has the number of examples per client.
#client_outputs.model_output has the output of the model per client example.
I want to make use of the server model weights using server_state object.
I want to calculate the KL divergence between the weights of server model and each client's model per layer. Then use a relative weight to aggregate the client weights instead of vanilla federated averaging.
Instead of using tff.federated_mean I wish to use a different strategy basically an adaptive one based on the algorithm above.
So I needed some suggestions on how to go about implementing this.
Basically what I want to do is :
1)Sum all the values of client losses.
2)Calculate the KL divergence per layerbasis of all the clients with server and then determine whether to use adaptive optimization or FedAvg.
Also is there a way to manipulate this value as a python value which will be helpful for debugging purposes( I tried to use tf.print but that was not helpful either). Thanks!
Simplest option: compute weights for mean on clients
If I read the algorithm above correctly, we need only compute some weights for a mean on-the-fly. tff.federated_mean accepts an optional CLIENTS-placed weight argument, so probably the simplest option here is to compute the desired weights on the clients and pass them in to the mean.
This would look something like (assuming the appropriate definitions of the variables used below, which we will comment on):
#tff.federated_computation(...)
def round_function(...):
...
# We assume there is a tff.Computation training_fn that performs training,
# and we're calling it here on the correct arguments
trained_clients = tff.federated_map(training_fn, clients_placed_arguments)
# Next we assume there is a variable in-scope server_model,
# representing the 'current global model'.
global_model_at_clients = tff.federated_broadcast(server_model)
# Here we assume a function compute_kl_divergence, which takes
# two structures of tensors and computes the KL divergence
# (as a scalar) between them. The two arguments here are clients-placed,
# so the result will be as well.
kl_div_at_clients = tff.federated_map(compute_kl_divergence,
(global_model_at_clients, trained_clients))
# Perhaps we wish to not use raw KL divergence as the weight, but rather
# some function thereof; if so, we map a postprocessing function to
# the computed divergences. The result will still be clients-placed.
mean_weight = tff.federated_map(postprocess_divergence, kl_div_at_clients)
# Now we simply use the computed weights in the mean.
return tff.federated_mean(trained_clients, weight=mean_weight)
More flexible tool: tff.federated_reduce
TFF generally encourages algorithm developers to implement whatever they can 'in the aggregation', and as such exposes some highly customizable primitives like tff.federated_reduce, which allow you to run arbitrary TensorFlow "in the stream" between clients and server. If the above reading of the desired algorithm is incorrect and something more involved is needed, or you wish to flexibly experiment with totally different notions of aggregation (something TFF encourages and is designed to support), this may be the option for you.
In TFF's heuristic typing language, tff.federated_reduce has signature:
<{T}#CLIENTS, U, (<U, T> -> U)> -> U#SERVER
Meaning, federated_reduce take a value of type T placed at the clients, a 'zero' in a reduction algebra of type U, and a function accepting a U and a T and producing a U, and applies this function 'in the stream' on the way between clients and server, producing a U placed at the server. The function (<U, T> -> U) will be applied to the partially accumulated value U, and the 'next' element in the stream T (note however that TFF does not guarantee ordering of these values), returning another partially accumulated value U. The 'zero' should represent whatever 'partially accumulated' means over the empty set in your application; this will be the starting point of the reduction.
Application to this problem
The components
Your reduction function needs access to two pieces of data: the global model state and the result of training on a given client. This maps quite nicely to the type T. In this application, we will have something like:
T = <server_model=server_model_type, trained_model=trained_model_type>
These two types are likely to be the same, but may not necessarily be so.
Your reduction function will accept the partial aggregate, your server model and your client-trained model, returning a new partial aggregate. Here we will start assuming the same reading of the algorithm as above, that of a weighted mean with particular weights. Generally, the easiest way to compute a mean is to keep two accumulators, one for numerator and one for denominator. This will affect the choice of zero and reduction function below.
Your zero should contain a structure of tensors with value 0 mapping to the weights of your model--this will be the numerator. This would be generated for you if you had an aggregation like tff.federated_sum (as TFF knows what the zero should be), but for this case you'll have to get your hands on such a tensor yourself. This shouldn't be too hard with tf.nest.map_structure and tf.zeros_like.
For the denominator, we will assume we just need a scalar. TFF and TF are much more flexible than this--you could keep a per-layer or per-parameter denominator if desired--but for simplicity we will assume that we just want to divide by a single float in the end.
Therefore our type U will be something like:
U = <numerator=server_model_type, denominator=tf.float32>
Finally we come to our reduction function. It will be more or less a different composition of the same pieces above; we will make slightly tighter assumptions about them here (in particular, that all the local functions are tff.tf_computations--a technical assumption, arguably a bug on TFF). Our reduction function will be along the lines (assuming appropriate type aliases):
#tff.tf_computation(U, T)
def reduction(partial_accumulate, next_element):
kl_div = compute_kl_divergence(
next_element.server_model, next_element.trained_model)
weight = postprocess_divergence(kl_div)
new_numerator = partial_accumulate.numerator + weight * next_element.trained_model
new_denominator = partial_accumulate.denominator + weight
return collections.OrderedDict(
numerator=new_numerator, denominator=new_denominator)
Putting them together
The basic outline of a round will be similar to the above; but we have put more computation 'in the stream', and consequently there wil be less on the clients. We assume here the same variable definitions.
#tff.federated_computation(...)
def round_function(...):
...
trained_clients = tff.federated_map(training_fn, clients_placed_arguments)
global_model_at_clients = tff.federated_broadcast(server_model)
# This zip I believe is not necessary, but it helps my mental model.
reduction_arg = tff.federated_zip(
collections.OrderedDict(server_model=global_model_at_clients,
trained_model=trained_clients))
# We assume a zero as specified above
return tff.federated_reduce(reduction_arg,
zero,
reduction)

Get covariance best-fit parameters obtained by lmfit using non-"Leastsq"methods

I have some observational data and I want to fit some model parameters by using lmfit.Minimizer() to minimize an error function which, for reasons I won't get into here, must return a float instead of an array of residuals. This means that I cannot use the Leastsq method to minimize the function. In practice, methods nelder, BFGS and powell converge fine, but these methods do not provide the covariance of the best-fit parameters (MinimizerResult.covar).
I would like to know if thee is a simple way to compute this covariance when using any of the non-Leastsq methods.
It is true that the leastsq method is the only method that can calculate error bars and that this requires a residual array (with more elements than variables!).
It turns out that some work has been done in lmfit toward the goal of being able to compute uncertainties for scalar minimizers, but it is not complete. See https://github.com/lmfit/lmfit-py/issues/169 and https://github.com/lmfit/lmfit-py/pull/481. If you're interested in helping, that would be great!
But, yes, you could compute the covariance by hand. For each variable, you would need to make a small perturbation to its value (ideally around 1-sigma, but since that is what you're trying to calculate, you probably don't know it) and then fix that value and optimize all the other values. In this way you can compute the Jacobian matrix (derivative of the residual array with respect to the variables).
From the Jacobian matrix, the covariance matrix is (assuming there are no singularities):
covar = numpy.inv(numpy.dot(numpy.transpose(jacobian), jacobian))

Does TensorFlow gradient compute derivative of functions with unknown dependency on decision variable

I appreciate if you can answer my questions or provide me with useful resources.
Currently, I am working on a problem that I need to do alternating optimization. So, consider we have two decision variables x and y. In the first step I take the derivative of loss function wrt. x (for fixed y) and update x. On the second step, I need to take the derivative wrt. y. The issue is x is dependent on y implicitly and finding the closed form of cost function in a way to show the dependency of x on y is not feasible, so the gradients of cost function wrt. y are unknown.
1) My first question is whether "autodiff" method in reverse mode used in TensorFlow works for these problems where we do not have an explicit form of cost function wrt to one variable and we need the derivatives? Actually, the value of cost function is known but the dependency on decision variable is unknown via math.
2) From a general view, if I define a node as a "tf.Variable" and have an arbitrary intractable function(intractable via computation by hand) of that variable that evolves through code execution, is it possible to calculate the gradients via "tf.gradients"? If yes, how can I make sure that it is implemented correctly? Can I check it using TensorBoard?
My model is too complicated but a simplified form can be considered in this way: suppose the loss function for my model is L(x). I can code L(x) as a function of "x" during the construction phase in tensorflow. However, I have also another variable "k" that is initialized to zero. The dependency of L(x) on "k" shapes as the code runs so my loss function is L(x,k), actually. And more importantly, "x" is a function of "k" implicitly. (all the optimization is done using GradientDescent). The problem is I do not have L(x,k) as a closed form function but I have the value of L(x,k) at each step. I can use "numerical" methods like FDSA/SPSA but they are not exact. I just need to make sure as you said there is a path between "k" and L(x,k)but I do not know how!
TensorFlow gradients only work when the graph connecting the x and the y when you're computing dy/dx has at least one path which contains only differentiable operations. In general if tf gives you a gradient it is correct (otherwise file a bug, but gradient bugs are rare, since the gradient for all differentiable ops is well tested and the chain rule is fairly easy to apply).
Can you be a little more specific about what your model looks like? You might also want to use eager execution if your forward complication is too weird to express as a fixed dataflow graph.

Machine learning: why the cost function does not need to be derivable?

I was playing around with Tensorflow creating a customized loss function and this question about general machine learning arose to my head.
My understanding is that the optimization algorithm needs a derivable cost function to find/approach a minimum, however we can use functions that are non-derivable such as the absolute function (there is no derivative when x=0). A more extreme example, I defined my cost function like this:
def customLossFun(x,y):
return tf.sign(x)
and I expected an error when running the code, but it actually worked (it didn't learn anything but it didn't crash).
Am I missing something?
You're missing the fact that the gradient of the sign function is somewhere manually defined in the Tensorflow source code.
As you can see here:
def _SignGrad(op, _):
"""Returns 0."""
x = op.inputs[0]
return array_ops.zeros(array_ops.shape(x), dtype=x.dtype)
the gradient of tf.sign is defined to be always zero. This, of course, is the gradient where the derivate exists, hence everywhere but not in zero.
The tensorflow authors decided to do not check if the input is zero and throw an exception in that specific case
In order to prevent TensorFlow from throwing an error, the only real requirement is that you cost function evaluates to a number for any value of your input variables. From a purely "will it run" perspective, it doesn't know/care about the form of the function its trying to minimize.
In order for your cost function to provide you a meaningful result when TensorFlow uses it to train a model, it additionally needs to 1) get smaller as your model does better and 2) be bounded from below (i.e. it can't go to negative infinity). It's not generally necessary for it to be smooth (e.g. abs(x) has a kink where the sign flips). Tensorflow is always able to compute gradients at any location using automatic differentiation (https://en.wikipedia.org/wiki/Automatic_differentiation, https://www.tensorflow.org/versions/r0.12/api_docs/python/train/gradient_computation).
Of course, those gradients are of more use if you've chose a meaningful cost function isn't isn't too flat.
Ideally, the cost function needs to be smooth everywhere to apply gradient based optimization methods (SGD, Momentum, Adam, etc). But nothing's going to crash if it's not, you can just have issues with convergence to a local minimum.
When the function is non-differentiable at a certain point x, it's possible to get large oscillations if the neural network converges to this x. E.g., if the loss function is tf.abs(x), it's possible that the network weights are mostly positive, so the inference x > 0 at all times, so the network won't notice tf.abs. However, it's more likely that x will bounce around 0, so that the gradient is arbitrarily positive and negative. If the learning rate is not decaying, the optimization won't converge to the local minimum, but will bound around it.
In your particular case, the gradient is zero all the time, so nothing's going to change at all.
If it didn't learn anything, what have you gained ? Your loss function is differentiable almost everywhere but it is flat almost anywhere so the minimizer can't figure out the direction towards the minimum.
If you start out with a positive value, it will most likely be stuck at a random value on the positive side even though the minima on the left side are better (have a lower value).
Tensorflow can be used to do calculations in general and it provides a mechanism to automatically find the derivative of a given expression and can do so across different compute platforms (CPU, GPU) and distributed over multiple GPUs and servers if needed.
But what you implement in Tensorflow does not necessarily have to be a goal function to be minimized. You could use it e.g. to throw random numbers and perform Monte Carlo integration of a given function.

Has anyone managed to make Asynchronous advantage actor critic work with Mujoco experiments?

I'm using an open source version of a3c implementation in Tensorflow which works reasonably well for atari 2600 experiments. However, when I modify the network for Mujoco, as outlined in the paper, the network refuses to learn anything meaningful. Has anyone managed to make any open source implementations of a3c work with continuous domain problems, for example mujoco?
I have done a continuous action of Pendulum and it works well.
Firstly, you will build your neural network and output mean (mu) and standard deviation (sigma) for selecting an action.
The essential part of the continuous action is to include a normal distribution. I'm using tensorflow, so the code is looks like:
normal_dist = tf.contrib.distributions.Normal(mu, sigma)
log_prob = normal_dist.log_prob(action)
exp_v = log_prob * td_error
entropy = normal_dist.entropy() # encourage exploration
exp_v = tf.reduce_sum(0.01 * entropy + exp_v)
actor_loss = -exp_v
When you wanna sample an action, use the function tensorflow gives:
sampled_action = normal_dist.sample(1)
The full code of Pendulum can be found in my Github. https://github.com/MorvanZhou/tutorials/blob/master/Reinforcement_learning_TUT/10_A3C/A3C_continuous_action.py
I was hung up on this for a long time, hopefully this helps someone in my shoes:
Advantage Actor-critic in discrete spaces is easy: if your actor does better than you expect, increase the probability of doing that move. If it does worse, decrease it.
In continuous spaces though, how do you do this? The entire vector your policy function outputs is your move -- if you are on-policy, and you do better than expected, there's no way of saying "let's output that action even more!" because you're already outputting exactly that vector.
That's where Morvan's answer comes into play. Instead of outputting just an action, you output a mean and a std-dev for each output-feature. To choose an action, you pass your inputs in to create a mean/stddev for each output-feature, and then sample each feature from this normal distribution.
If you do well, you adjust the weights of your policy network to change the mean/stddev to encourage this action. If you do poorly, you do the opposite.