I am in a serious need of optimization of my some Unity projects and i have so many objects which are from 3DsMax, so i am wondering if Combining the meshes would have any effect on the memory/performance or i should leave the objects Instance to each other as it would save me some space.
This arise the question that what is the difference between Combined mesh objects or Instance Objects as it will save a lot of memory and hassle if one realy knows the difference and what is better
Looking forward for some Brief information about the two
Thanks
Combining is useful if you have a lot of unique assets that only appear once or twice in a scene, e.g unique buildings in a 3D FPS, but not cloned houses in a SimCity style game. If you have a model that appears many times in a scene it's more performant to have Unity (automatically) batch them, this is Unity's default behaviour. e.g lets say your scene is in an art gallery; if the gallery contains a dozen distinct sculptures then combine them. If it contains a dozen of the same sculpture don't bother, Unity will batch them for you.
However, you should be wary of using different materials, each material adds to the draw count. So, if you had 10 of the same model but using 5 different materials it's going to be expensive. The way round this is to use a texture atlas with a single material, with different UV mapping for each models. This means you have a lot of different models, but save on render time due to the single material.
Also, be aware that transparent shaders much more expensive than opaque, if you have three semi transparent objects in front of each other that's at least 4 render passes.
As you probably know this is a complex subject with a lot of variables (many more than I can describe here) and is best judged by using the profiler.
Here are some general rules of thumb I've learned while creating a game for mobile which naturally is performance critical:
Use as few a materials as possible
Use as fewer textures as possible, share textures between materials
Recycle models as often as possible. Often a model oriented at a different angle or in a different material can look like a whole new model to the player, particularly if their attention is elsewhere in the game
Use LODS extensively
Ensure your models are clean, remove all unnecessary vertices before importing
After importing think if there's anything about the model that could be represented with less vertices
Good use of normal mapping can pay off, depending on the platform. If you can trade in 1000 verts for a 256 px normal map and 50 verts then do it, otherwise dont bother normal mapping just to save a few verts
I created a tutorial that explains draw calls, static batching, lightmapping etc.
https://www.youtube.com/watch?v=x0t2xylbTo8&t=253s
Related
In 2007, when I was young and foolish and before I knew about Open Street Map, I started an urban historical map project. I was working in Illustrator, it was going to be an interactive Flash piece, and my process was to draw the maps first, with the thought that I'd label some, but not all, of the street later on.
As we know Flash was began to die about 2010 and I put the project away for a number of years. I picked it up again a couple years ago and continued my earlier practice of just drawing streets and water features, this time with the intention of making it a conventional web map. Now I'm pretty close to finishing the drawing of a five-layer (1871, 1903, 1932, 1952 and 2016) historical map of a medium-sized city, though it still lacks labels.
My problem now is how to add large numbers of labels, many of them duplicates. There could be as many as 10,000 for all five layers, though as a practical matter I may have to settle for a smallish fraction of that number. Based on web searches I gather my workflow is unusual and that mine is therefore an unusual problem.
I've exported my maps and brought them into QGIS and played with the software a little. The process of adding labels to objects doesn't seem terribly efficient or user-friendly, but that's probably due to my unfamiliarity with the program.
So my question is this: Are there any tricks to speed up the painful process of adding large numbers of duplicate labels in either QGIS or ArcGIS? Since so many of the streets exist in all five layers, functionality like the ability to select multiple objects in different layers and edit their attributes simultaneously in the Attribute Table would be a godsend. (Doesn't seem possible.) So would the ability to copy the attributes from one object and paste them onto other objects. Or the ability to do either of these things in Illustrator via a plugin and then export the data along with the shapes to a GIS program.
Thanks for your help!
If I understand the issue correctly I think are several different solutions. When you say that you
Typically for a spatial layer in ArcGIS or QGIS you define how to label all features in a layer once by defining a label scheme to use across all features, 1 or 1 million. This assumes that each feature in the layer has one or more attributes in the associated table for the layer.
How are you converting the Illustrator vectors to a spatial layer? DXF?
You will likely have better/faster responses to this question by posting it to the GIS Stack exchange. https://gis.stackexchange.com/
I'm relatively new and am still learning the basics. I've used NVIDIA DIGITS in the past, and am now looking at Tensorflow. While I've been able to fumble my way around creating some models for a few projects I'm working on, I really want to start diving deeper into what I'm doing, how I'm doing it, and ultimately a better understanding of why.
One area that I would like to start with is the Images that I'm using for training and testing. Can anyone point me to a blog, an article, a paper, or give me some insight in what I need to consider when selecting images to train a new model on. Up until recently, I've been using datasets that have already been selected and that are available for download. Lets say I'm going to start working on a project that involves object detection of ships from a variety of distances and angles.
So my thoughts would be
1) I need a large quantity of images.
2) The images need to contain ships of the different types I would like to detect. (lets just say one class, ships, don't care what type of ships)
3) I also need to have images that have a great variety of distance perspective for the different types of ships.
Ultimately, my thoughts are that the images need to reflect the distance, perspective, and types of ships I would ideally want to identify from the video. Seems simple enough.
However, there are a number of questions
Does the images need to be the same/similar resolution as the camera I'll be using, for best results?
Does the images all need to be the same resolution?
Can I use a single image and just digitally zoom out on the image to give the illusion of different distances?
I'm sure there are a number of other questions that I'm not asking, or should be asking. Are there any guide lines available for creating a solid collection of images to use when creating the collection of images for training and validation?
I recommend thinking through end to end, like would you need to classify ship models as a next step? I recommend going through well known public datasets and actually work with the structure, how to store data, labels, how to handle preprocessing etc.
More importantly, what are you trying to achieve? Talking to experts in the topic does help greatly while preparing your own dataset.
Use open source images if you can, e.g. flickr, google, imagenet.
No, you don't need them to be the same resolution.
It is not ideal to zoom in/out images to use in different categories. Preprocessing images and data augmentation already does this to create more distant representations of the same class. This is why I would recommend hands on approach with an existing dataset first.
Yes, what you need is many, different representations of classes, and a roughly balanced dataset of classes. If you define your data structure well in the beginning, it will save you a ton of time as you won't have to make changes often.
I mean, the basics..
1) I have seen in the Online videos, that they are modelling a character (or anything) through one object only, they are extruding, loop cut, scaling, etc and model a character, why don't they design different objects separately (like hands separately, legs separately, body separate and then join them together and make one object)..??????
2) Like What the texturing department has to see so that they should not return the model back to the modelling department. I mean like the meshes(polygons) over the model face must be quad, etc not triangle. while modelling a character..
what type of basics i should know , means is there any check list or is there any basics which i should see before modelling a character..
Please correct me if i am wrong , and answer my both questions.. Thanks
It may be common but it definitely isn't mandatory to have a model as one solid mesh. Some models will have parts of the body underneath clothing removed to reduce the poly count. How the model is to be used will be a big factor to how you model it, that is a for a single image it is easy to get away with multiple parts, while a character that will be animated in a cartoony animation could be stretched and distorted in ways that could show holes in a model with multiple pieces. When working in a team, there may be rules in place determining whether a solid or multi-part model is considered acceptable.
An example of an animated model made from multiple parts is Sintel, the main character in the Sintel short animation.
There is nothing stopping you from making a library of separate body parts and joining them together when you make your model. Be aware that this can bring complications, if you model an arm with 12 verts and then you make your hand with 15, then you have to fiddle around to merge them together.
You will also find some extra freedom to work with multiple body parts during the sculpting phase as you are creating a high density mesh that is used as a template to model a clean mesh over. This step is called retopology.
It is more likely that the rigging department will send a model back for fixing than the texturing department. When adding a rig and deforming the mesh in different ways, any parts that deform badly will be revealed and need fixing.
[...] (like hands separately, legs separately, body separate and then
join them together and make one object) [...]
Some modelers I know do precisely this and they do it in a way where they block in the design using broad primitive shapes, start slicing some edge loops and add broad details, then merge everything together, then sculpt it a bit further with high-res sculpting tools, and finally retopologize everything.
The main modelers I know who do this, however, model in a way that tries to adhere as close as possible to the concept artist's illustration. They're not creating their own models from scratch but are instead given top/front/back/side illustrations of a character, for example, and are just trying to match it as closely as possible.
When you start modeling everything in small pieces, it helps to have that concept illustration since you can get lost in the topology otherwise and fusing organic meshes together can be difficult to do in a clean way.
[...] why don't they design different objects separately? [...]
Again they sometimes do, but one of the appeals of creating organic meshes by keeping it seamless the entire time is that you can start to focus on how edge loops propagate across the entire model. It helps to know that the base of a finger is a hexagon, for example, in figuring out how to cleanly propagate and terminate the edge loops for a hand, and likewise have a strategy for the hand to cleanly propagate and terminate edge loops as it joins into the forearm.
It can be hard to get the topology to match up cleanly if you designed everything in small pieces and then had to figure out how to merge it all together. Polygonal modeling is very topology-oriented. It tends to require as much thinking about the wireframe and edge flows as it does the shape of the model, since it needs to be a certain way for everything to subdivide cleanly and smoothly and animate predictably with subdivision surfaces.
I used to work with developers who took one glance at the topology-dominated workflow of polygonal modeling and immediately wanted to jump to seeking alternatives, like voxel sculpting. With voxels you could be able to potentially model everything in pieces and foose it all together in a nice and smooth organic way without thinking about topology whatsoever.
However, that loses sight of the key appeal of polygonal meshes. Their wire flow forms a control lattice with a very finite number of control points for the artist to animate and move around to predictably control the shape of their model. You immediately lose that with a voxel representation -- so while voxels free the artist of thinking about how the topology works and how the wireframe flows through the model, it also loses all those control benefits of having that. So often if people use voxel sculpting, they end up meticulously retopologizing everything at the end anyway to gain back that level of coarse and predictable control they have with polygonal meshes.
I mean like the
meshes(polygons) over the model face must be quad, etc not triangle.
while modelling a character..
This is all in the context of subdivision surfaces: the most popular of which are variants of catmull-clark. That favors quads to get the most predictable subdivision. It's much easier for the artist to predict how everything will look like and deform if they favor, as much as possible, uniform grids of quadrangles wrapped around their model with 4-valence vertices and every polygon having 4 points. Then only in the case where they kind of need to "join" these quad grids together, they might create some funky topology: a 5-valence vertex here, a 3-valence vertex there, a 5-sided polygon here, a triangle there -- but those cases tend to deform a bit unpredictably (at least unintuitively), so artists tend to try to avoid these as much as possible.
Because when artists model polygonal meshes in this way, they are not just trying to create a statue with a nice shape. If that's all they wanted to do, they'd save themselves a lot of grief avoiding dealing with things in terms of individual vertices/edges/polygons in the first place and using something like Sculptris. Instead they are designing not only shapes but also designing a control lattice, a wire flow and a set of control points they can easily move around in the future to get predictable behavior out of their control cage. They're basically designing controls or an "interactive GUI/rig" almost for themselves with how they design the topology.
2) Like What the texturing department has to see so that they should
not return the model back to the modelling department.
Generally how a mesh is modeled in a direct sense shouldn't affect the texture department's work much at all if they're working with UV maps and painting textures over them (at that point it doesn't really matter if a model has clean wire flows or not, since all the texture artists do is pain images over the 2D UV map or directly onto the 3D model).
However, if the modeler does the UV mapping, then regardless of whether he uses quad meshes and clean wire flows or not, if the UV mapping is poor, then the resulting texture images will look all distorted. So the UV maps need to be made well with minimal distortion, though that's usually easy to do automatically these days.
The other exception is if the department doesn't use UV maps and instead uses, say, PTex from Disney. PTex really favors quads. In the original paper at least, it only worked with quads.
Background
I'm working on a project where a user gets scanned by a Kinect (v2). The result will be a generated 3D model which is suitable for use in games.
The scanning aspect is going quite well, and I've generated some good user models.
Example:
Note: This is just an early test model. It still needs to be cleaned up, and the stance needs to change to properly read skeletal data.
Problem
The problem I'm currently facing is that I'm unsure how to place skeletal data inside the generated 3D model. I can't seem to find a program that will let me insert the skeleton in the 3D model programmatically. I'd like to do this either via a program that I can control programmatically, or adjust the 3D model file in such a way that skeletal data gets included within the file.
What have I tried
I've been looking around for similar questions on Google and StackOverflow, but they usually refer to either motion capture or skeletal animation. I know Maya has the option to insert skeletons in 3D models, but as far as I could find that is always done by hand. Maybe there is a more technical term for the problem I'm trying to solve, but I don't know it.
I do have a train of thought on how to achieve the skeleton insertion. I imagine it to go like this:
Scan the user and generate a 3D model with Kinect;
1.2. Clean user model, getting rid of any deformations or unnecessary information. Close holes that are left in the clean up process.
Scan user skeletal data using the Kinect.
2.2. Extract the skeleton data.
2.3. Get joint locations and store as xyz-coordinates for 3D space. Store bone length and directions.
Read 3D skeleton data in a program that can create skeletons.
Save the new model with inserted skeleton.
Question
Can anyone recommend (I know, this is perhaps "opinion based") a program to read the skeletal data and insert it in to a 3D model? Is it possible to utilize Maya for this purpose?
Thanks in advance.
Note: I opted to post the question here and not on Graphics Design Stack Exchange (or other Stack Exchange sites) because I feel it's more coding related, and perhaps more useful for people who will search here in the future. Apologies if it's posted on the wrong site.
A tricky part of your question is what you mean by "inserting the skeleton". Typically bone data is very separate from your geometry, and stored in different places in your scene graph (with the bone data being hierarchical in nature).
There are file formats you can export to where you might establish some association between your geometry and skeleton, but that's very format-specific as to how you associate the two together (ex: FBX vs. Collada).
Probably the closest thing to "inserting" or, more appropriately, "attaching" a skeleton to a mesh is skinning. There you compute weight assignments, basically determining how much each bone influences a given vertex in your mesh.
This is a tough part to get right (both programmatically and artistically), and depending on your quality needs, is often a semi-automatic solution at best for the highest quality needs (commercial games, films, etc.) with artists laboring over tweaking the resulting weight assignments and/or skeleton.
There are algorithms that get pretty sophisticated in determining these weight assignments ranging from simple heuristics like just assigning weights based on nearest line distance (very crude, and will often fall apart near tricky areas like the pelvis or shoulder) or ones that actually consider the mesh as a solid volume (using voxels or tetrahedral representations) to try to assign weights. Example: http://blog.wolfire.com/2009/11/volumetric-heat-diffusion-skinning/
However, you might be able to get decent results using an algorithm like delta mush which allows you to get a bit sloppy with weight assignments but still get reasonably smooth deformations.
Now if you want to do this externally, pretty much any 3D animation software will do, including free ones like Blender. However, skinning and character animation in general is something that tends to take quite a bit of artistic skill and a lot of patience, so it's worth noting that it's not quite as easy as it might seem to make characters leap and dance and crouch and run and still look good even when you have a skeleton in advance. That weight association from skeleton to geometry is the toughest part. It's often the result of many hours of artists laboring over the deformations to get them to look right in a wide range of poses.
I have been reading quite a bit graph data structures lately, as I have intentions of writing my own UML tool. As far as I can see, what I want can be modeled as a simple graph consisting of vertices and edges. Vertices will have a few values, and will so best be represented as objects. Edges does not, as far as I can see, need to be neither directed or weighted, but I do not want to choose an implementation that makes it impossible to include such properties later on.
Being educated in pure object oriented programming, the first things that comes to my mind is representing vertices and edges by classes, like for example:
Class: Vertice
- Array arrayOfEdges;
- String name;
Class: Edge
- Vertice from;
- Vertice to;
This gives me the possibility to later introduce weights, direction, and so on. Now, when I read up on implementing graphs, it seems that this is a very uncommon solution. Earlier questions here on Stack Overflow suggests adjacency lists and adjacency matrices, but being completely new to graphs, I have a hard time understanding why that is better than my approach.
The most important aspects of my application is having the ability to easily calculate which vertice is clicked and moved, and the ability to add and remove vertices and edges between the vertices. Will this be easier to accomplish in one implementation over another?
My language of choice is Objective-C, but I do not believe that this should be of any significance.
Here are the two basic graph types along with their typical implementations:
Dense Graphs:
Adjacency Matrix
Incidence Matrix
Sparse Graphs:
Adjacency List
Incidence List
In the graph framework (closed source, unfortunately) that I've ben writing (>12k loc graph implementations + >5k loc unit tests and still counting) I've been able to implement (Directed/Undirected/Mixed) Hypergraphs, (Directed/Undirected/Mixed) Multigraphs, (Directed/Undirected/Mixed) Ordered Graphs, (Directed/Undirected/Mixed) KPartite Graphs, as well as all kinds of Trees, such as Generic Trees, (A,B)-Trees, KAry-Trees, Full-KAry-Trees, (Trees to come: VP-Trees, KD-Trees, BKTrees, B-Trees, R-Trees, Octrees, …).
And all without a single vertex or edge class. Purely generics. And with little to no redundant implementations**
Oh, and as if this wasn't enough they all exist as mutable, immutable, observable (NSNotification), thread-unsafe and thread-safe versions.
How? Through excessive use of Decorators.
Basically all graphs are mutable, thread-unsafe and not observable. So I use Decorators to add all kinds of flavors to them (resulting in no more than 35 classes, vs. 500+ if implemented without decorators, right now).
While I cannot give any actual code, my graphs are basically implemented via Incidence Lists by use of mainly NSMutableDictionaries and NSMutableSets (and NSMutableArrays for my ordered Trees).
My Undirected Sparse Graph has nothing but these ivars, e.g.:
NSMutableDictionary *vertices;
NSMutableDictionary *edges;
The ivar vertices maps vertices to adjacency maps of vertices to incident edges ({"vertex": {"vertex": "edge"}})
And the ivar edges maps edges to incident vertex pairs ({"edge": {"vertex", "vertex"}}), with Pair being a pair data object holding an edge's head vertex and tail vertex.
Mixed Sparse Graphs would have a slightly different mapping of adjascency/incidence lists and so would Directed Sparse Graphs, but you should get the idea.
A limitation of this implementation is, that both, every vertex and every edge needs to have an object associated with it. And to make things a bit more interesting(sic!) each vertex object needs to be unique, and so does each edge object. This is as dictionaries don't allow duplicate keys. Also, objects need to implement NSCopying. NSValueTransformers or value-encapsulation are a way to sidestep these limitation though (same goes for the memory overhead from dictionary key copying).
While the implementation has its downsides, there's a big benefit: immensive versatility!
There's hardly any type graph that I could think of that's impossible to archieve with what I already have. Instead of building each type of graph with custom built parts you basically go to your box of lego bricks and assemble the graphs just the way you need them.
Some more insight:
Every major graph type has its own Protocol, here are a few:
HypergraphProtocol
MultigraphProtocol [tagging protocol] (allows parallel edges)
GraphProtocol (allows directed & undirected edges)
UndirectedGraphProtocol [tagging protocol] (allows only undirected edges)
DirectedGraphProtocol [tagging protocol] (allows only directed edges)
ForestProtocol (allows sets of disjunct trees)
TreeProtocol (allows trees)
ABTreeProtocol (allows trees of a-b children per vertex)
FullKAryTreeProtocol [tagging protocol] (allows trees of either 0 or k children per vertex)
The protocol nesting implies inharitance (of both protocols, as well as implementations).
If there's anything else you'd like to get some mor insight, feel free to leave a comment.
Ps: To give credit where credit is due: Architecture was highly influenced by the
JUNG Java graph framework (55k+ loc).
Pps: Before choosing this type of implementation I had written a small brother of it with just undirected graphs, that I wanted to expand to also support directed graphs. My implementation was pretty similar to the one you are providing in your question. This is what gave my first (rather naïve) project an abrupt end, back then: Subclassing a set of inter-dependent classes in Objective-C and ensuring type-safety Adding a simple directedness to my graph cause my entire code to break apart. (I didn't even use the solution that I posted back then, as it would have just postponed the pain) Now with the generic implementation I have more than 20 graph flavors implemented, with no hacks at all. It's worth it.
If all you want is drawing a graph and being able to move its nodes on the screen, though, you'd be fine with just implementing a generic graph class that can then later on be extended to specific directedness, if needed.
An adjacency matrix will have a bit more difficulty than your object model in adding and removing vertices (but not edges), since this involves adding and removing rows and columns from a matrix. There are tricks you could use to do this, like keeping empty rows and columns, but it will still be a bit complicated.
When moving a vertex around the screen, the edges will also be moved. This also gives your object model a slight advantage, since it will have a list of connected edges and will not have to search through the matrix.
Both models have an inherent directedness to the edges, so if you want to have undirected edges, then you will have to do additional work either way.
I would say that overall there is not a whole lot of difference. If I were implementing this, I would probably do something similar to what you are doing.
If you're using Objective-C I assume you have access to Core Data which would be probably be a great place to start - I understand you're creating your own graph, the strength of Core Data being that it can do a lot of the checking you're talking about for free if you set up your schema properly