For example one user executes query like this:
UPDATE table SET column = 100;
And second user:
UPDATE table SET column = 200;
And lets say, these two queries are requested exactly same time, same seconds, same nanoseconds (or minimal time measurement unit, which is for this DB), then which query will be executed first and which one second?
Will database in this case choose queries sequence just randomly?
p.s. I don't tag some concrete database, I think this mechanism for all major RDBMS are similar. Or may be not?
RDBMS's implement a set of properties abbreviated (and called) ACID. Wikipedia explains the concept.
Basically, ACID-compliant databases lock the data at some level (table, page, and row locks are typical). In principle, only one write lock can be acquired for the same object at the same time. So, the database will arbitrarily lock the row for one of the transactions.
What happens to the other transaction? That depends, but one of two things should happen:
The transaction waits until the lock is available. So "in the end", it will assign the value (lose the lock, win the war ;).
The transaction will "timeout" because the appropriate row(s) are not available.
Your case is rather more complicated, because all rows in a table are affected. In the end, though, all rows should have the same value in an ACID-compliant database.
I should note that major databases are (usually) ACID-compliant. However, even though they have locks and transactions and similar mechanisms, the details can and do vary among databases.
Usually, the DML operations are done by acquiring DML locks, with the help of which the operations are made atomic and consistent. So, in your case, either of the query will be given the DML lock and executed and then the second one will go ahead in the similar fashion. which one goes first and second is not known as such.
Related
Forgive me if this is a silly question (I'm new to databases and SQL), but is it possible to lock a table, similar to the lock keyword in C#, so that I can query the database to see if a condition is met, then insert a row afterwards while ensuring the state of the table has not changed between the two actions?
In this case, I have a table transactions which has two columns: user and product. This is a many-to-one relationship; multiple users can have the same product. However, the number of products is limited.
When a user adds a product to their account, I want to first check if the total number of items with the same product value to see if it is under a certain threshold, then add the transaction afterwards. However, since this is a multithreaded application, multiple transactions can come in at the same time. I want to make sure that one of these is rejected, and one succeeds, such that the number of transactions with the same product value can never be higher than the limit.
Rough pseudo-code for what I am trying to do:
my_user, my_product = ....
my_product_count = 0
for each transaction in transactions:
if product == my_product:
my_product_count += 1
if my_product_count < LIMIT:
insert my_user, my_product into transactions
return SUCCESS
else:
return FAILURE
I am using SQLAlchemy with SQLite3, if that matters.
Not needed if you do both operations in a transaction - which is supported by databases. Databases do maintain locks to guarantee transactional integrity. In fact that is one of the four pillars of what a database does - they are called ACID guaranetees (for (Atomicity, Consistency, Isolation, Durability).
So, in your case, to ensure consistence you would make both operations in one transaction and seat the transaction parameters in such a way to block reads on the already read rows.
SQL locking is WAY more powerfull than the lock statement because, among other things, databases per definition have multiple threads (users) hitting the same data - something that is exceedingly rare in programming (where same data access is avoided in multi threaded programming as much as possible).
I suggest a good book about SQL - because you need to simply LEARN some fundamental concepts at one point, or you will make mistakes that cost money.
Transactions allow you to use multiple SQL statements atomically.
(SQLite implements transactions by locking the entire database, but the exact mechanism doesn't matter, and you might want to use another database later anyway.)
However, you don't even need to bother with explicit transactions if your desired algorithm can be handled with single SQL statement, like this:
INSERT INTO transactions(user, product)
SELECT #my_user, #my_product
WHERE (SELECT COUNT(*)
FROM transactions
WHERE product = #my_product) < #LIMIT;
I have a database table that I use as a queue system, where separate process that talk to each other create and read entries in the table. For example, when a user initiates a search an entry is created, then another process that runs every second or two will pick up that new entry, update the status and then do a search, updating the entry again when the search is complete. This all seems to work well with thousands of searches per hour.
However, I have a master admin screen that lets me view the status of all of these 'jobs' but it runs very slowly. I basically return all entries in the table for the last hour so I can keep an eye on what's going on. I think that I am running into lock issues of some sort. I only need to read each entry, and don't really care if it the data is a little bit out of date. I just use a standard 'Select * from Table' statement so maybe it is waiting for other locks to expire before returning data as the jobs are constantly updating the data.
Would this be handled better by a certain kind of cursor to return each row one at a time, etc? Any other ideas?
Thanks
If you really don't care if the data is a bit out of date... or if you only need the data to be 99.99% accurate, consider using WITH (NOLOCK):
SELECT * FROM Table WITH (NOLOCK);
This will instruct your query to use the READ UNCOMMITTED ISOLATION LEVEL, which has the following behavior:
Specifies that dirty reads are allowed. No shared locks are issued to
prevent other transactions from modifying data read by the current
transaction, and exclusive locks set by other transactions do not
block the current transaction from reading the locked data.
Be aware that NOLOCK may cause some inaccuracies in your data, so it probably isn't a good idea to use it throughout the rest of your system.
You need FROM yourtable WITH (NOLOCK) table hint.
You may also want to look at transaction isolation in your update process, if you aren't already
An alternative to NOLOCK (which can lead to very bad things, such as missed rows or duplicated rows) is to allow read committed snapshot isolation at the database level and then issue your query with:
SET TRANSACTION ISOLATION LEVEL SNAPSHOT;
The situation is as follows:
A big production client/server system where one central database table has a certain column that has had NULL as default value but now has 0 as default value. But all the rows created before that change of course still have value as null and that generates a lot of unnecessary error messages in this system.
Solution is of course simple as that:
update theTable set theColumn = 0 where theColumn is null
But I guess it's gonna take a lot of time to complete this transaction? Apart from that, will there be any other issues I should think of before I do this? Will this big transaction block the whole database, or that particular table during the whole update process?
This particular table has about 550k rows and 500k of them has null value and will be affected by the above sql statement.
The impact on the performance of other connected clients depends on:
How fast the servers hardware is
How many indexes containing the column your update statement has to update
Which transaction isolation settings the other clients connect to the database
The db engine will acquire write locks, so when your clients only need read access to the table, it should not be a big problem.
500.000 records sounds not too much for me, but as i said, the time and resources the update takes depends on many factors.
Do you have a similar test system, where you can try out the update?
Another solution is to split the one big update into many small ones and call them in a loop.
When you have clients writing frequently to that table, your update statement might get blocked "forever". I have seen databases where performing the update row by row was the only way of getting the update through. But that was a table with about 200.000.000 records and about 500 very active clients!
it's gonna take a lot of time to complete this transaction
there's no definite way to say this. Depends a lot on the hardware, number of concurrent sessions, whether the table has got locks, the number of interdependent triggers et al.
Will this big transaction block the whole database, or that particular table during the whole update process
If the "whole database" is dependent on this table then it might.
will there be any other issues I should think of before I do this
If the table has been locked by other transaction - you might run into a row-lock situation. In rare cases, perhaps a dead lock situation. Best would be to ensure that no one is utilizing the table, check for any pre-exising locks and then run the statement.
Locking issues are vendor specific.
Asuming no triggers on the table, half a million rows is not much for a dediated database server even with many indexes on the table.
I'm a bit confused with transactions vs locking tables to ensure database integrity and make sure a SELECT and UPDATE remain in sync and no other connection interferes with it. I need to:
SELECT * FROM table WHERE (...) LIMIT 1
if (condition passes) {
// Update row I got from the select
UPDATE table SET column = "value" WHERE (...)
... other logic (including INSERT some data) ...
}
I need to ensure that no other queries will interfere and perform the same SELECT (reading the 'old value' before that connection finishes updating the row.
I know I can default to LOCK TABLES table to just make sure that only 1 connection is doing this at a time, and unlock it when I'm done, but that seems like overkill. Would wrapping that in a transaction do the same thing (ensuring no other connection attempts the same process while another is still processing)? Or would a SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE be better?
Locking tables prevents other DB users from affecting the rows/tables you've locked. But locks, in and of themselves, will NOT ensure that your logic comes out in a consistent state.
Think of a banking system. When you pay a bill online, there's at least two accounts affected by the transaction: Your account, from which the money is taken. And the receiver's account, into which the money is transferred. And the bank's account, into which they'll happily deposit all the service fees charged on the transaction. Given (as everyone knows these days) that banks are extraordinarily stupid, let's say their system works like this:
$balance = "GET BALANCE FROM your ACCOUNT";
if ($balance < $amount_being_paid) {
charge_huge_overdraft_fees();
}
$balance = $balance - $amount_being paid;
UPDATE your ACCOUNT SET BALANCE = $balance;
$balance = "GET BALANCE FROM receiver ACCOUNT"
charge_insane_transaction_fee();
$balance = $balance + $amount_being_paid
UPDATE receiver ACCOUNT SET BALANCE = $balance
Now, with no locks and no transactions, this system is vulnerable to various race conditions, the biggest of which is multiple payments being performed on your account, or the receiver's account in parallel. While your code has your balance retrieved and is doing the huge_overdraft_fees() and whatnot, it's entirely possible that some other payment will be running the same type of code in parallel. They'll be retrieve your balance (say, $100), do their transactions (take out the $20 you're paying, and the $30 they're screwing you over with), and now both code paths have two different balances: $80 and $70. Depending on which ones finishes last, you'll end up with either of those two balances in your account, instead of the $50 you should have ended up with ($100 - $20 - $30). In this case, "bank error in your favor".
Now, let's say you use locks. Your bill payment ($20) hits the pipe first, so it wins and locks your account record. Now you've got exclusive use, and can deduct the $20 from the balance, and write the new balance back in peace... and your account ends up with $80 as is expected. But... uhoh... You try to go update the receiver's account, and it's locked, and locked longer than the code allows, timing out your transaction... We're dealing with stupid banks, so instead of having proper error handling, the code just pulls an exit(), and your $20 vanishes into a puff of electrons. Now you're out $20, and you still owe $20 to the receiver, and your telephone gets repossessed.
So... enter transactions. You start a transaction, you debit your account $20, you try to credit the receiver with $20... and something blows up again. But this time, instead of exit(), the code can just do rollback, and poof, your $20 is magically added back to your account.
In the end, it boils down to this:
Locks keep anyone else from interfering with any database records you're dealing with. Transactions keep any "later" errors from interfering with "earlier" things you've done. Neither alone can guarantee that things work out ok in the end. But together, they do.
in tomorrow's lesson: The Joy of Deadlocks.
I've started to research the same topic for the same reasons as you indicated in your question. I was confused by the answers given in SO due to them being partial answers and not providing the big picture. After I read couple documentation pages from different RDMS providers these are my takes:
TRANSACTIONS
Statements are database commands mainly to read and modify the data in the database. Transactions are scope of single or multiple statement executions. They provide two things:
A mechanism which guaranties that all statements in a transaction are executed correctly or in case of a single error any data modified by those statements will be reverted to its last correct state (i.e. rollback). What this mechanism provides is called atomicity.
A mechanism which guaranties that concurrent read statements can view the data without the occurrence of some or all phenomena described below.
Dirty read: A transaction reads data written by a concurrent
uncommitted transaction.
Nonrepeatable read: A transaction re-reads data it has previously read
and finds that data has been modified by another transaction (that
committed since the initial read).
Phantom read: A transaction re-executes a query returning a set of
rows that satisfy a search condition and finds that the set of rows
satisfying the condition has changed due to another recently-committed
transaction.
Serialization anomaly: The result of successfully committing a group
of transactions is inconsistent with all possible orderings of running
those transactions one at a time.
What this mechanism provides is called isolation and the mechanism which lets the statements to chose which phenomena should not occur in a transaction is called isolation levels.
As an example this is the isolation-level / phenomena table for PostgreSQL:
If any of the described promises is broken by the database system, changes are rolled back and the caller notified about it.
How these mechanisms are implemented to provide these guaranties is described below.
LOCK TYPES
Exclusive Locks: When an exclusive lock acquired over a resource no other exclusive lock can be acquired over that resource. Exclusive locks are always acquired before a modify statement (INSERT, UPDATE or DELETE) and they are released after the transaction is finished. To explicitly acquire exclusive locks before a modify statement you can use hints like FOR UPDATE(PostgreSQL, MySQL) or UPDLOCK (T-SQL).
Shared Locks: Multiple shared locks can be acquired over a resource. However, shared locks and exclusive locks can not be acquired at the same time over a resource. Shared locks might or might not be acquired before a read statement (SELECT, JOIN) based on database implementation of isolation levels.
LOCK RESOURCE RANGES
Row: single row the statements executes on.
Range: a specific range based on the condition given in the statement (SELECT ... WHERE).
Table: whole table. (Mostly used to prevent deadlocks on big statements like batch update.)
As an example the default shared lock behavior of different isolation levels for SQL-Server :
DEADLOCKS
One of the downsides of locking mechanism is deadlocks. A deadlock occurs when a statement enters a waiting state because a requested resource is held by another waiting statement, which in turn is waiting for another resource held by another waiting statement. In such case database system detects the deadlock and terminates one of the transactions. Careless use of locks can increase the chance of deadlocks however they can occur even without human error.
SNAPSHOTS (DATA VERSIONING)
This is a isolation mechanism which provides to a statement a copy of the data taken at a specific time.
Statement beginning: provides data copy to the statement taken at the beginning of the statement execution. It also helps for the rollback mechanism by keeping this data until transaction is finished.
Transaction beginning: provides data copy to the statement taken at the beginning of the transaction.
All of those mechanisms together provide consistency.
When it comes to Optimistic and Pessimistic locks, they are just namings for the classification of approaches to concurrency problem.
Pessimistic concurrency control:
A system of locks prevents users from modifying data in a way that
affects other users. After a user performs an action that causes a
lock to be applied, other users cannot perform actions that would
conflict with the lock until the owner releases it. This is called
pessimistic control because it is mainly used in environments where
there is high contention for data, where the cost of protecting data
with locks is less than the cost of rolling back transactions if
concurrency conflicts occur.
Optimistic concurrency control:
In optimistic concurrency control, users do not lock data when they
read it. When a user updates data, the system checks to see if another
user changed the data after it was read. If another user updated the
data, an error is raised. Typically, the user receiving the error
rolls back the transaction and starts over. This is called optimistic
because it is mainly used in environments where there is low
contention for data, and where the cost of occasionally rolling back a
transaction is lower than the cost of locking data when read.
For example by default PostgreSQL uses snapshots to make sure the read data didn't change and rolls back if it changed which is an optimistic approach. However, SQL-Server use read locks by default to provide these promises.
The implementation details might change according to database system you chose. However, according to database standards they need to provide those stated transaction guarantees in one way or another using these mechanisms. If you want to know more about the topic or about a specific implementation details below are some useful links for you.
SQL-Server - Transaction Locking and Row Versioning Guide
PostgreSQL - Transaction Isolation
PostgreSQL - Explicit Locking
MySQL - Consistent Nonlocking Reads
MySQL - Locking
Understanding Isolation Levels (Video)
You want a SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE inside a transaction, as you said, since normally SELECTs, no matter whether they are in a transaction or not, will not lock a table. Which one you choose would depend on whether you want other transactions to be able to read that row while your transaction is in progress.
http://dev.mysql.com/doc/refman/5.0/en/innodb-locking-reads.html
START TRANSACTION WITH CONSISTENT SNAPSHOT will not do the trick for you, as other transactions can still come along and modify that row. This is mentioned right at the top of the link below.
If other sessions simultaneously
update the same table [...] you may
see the table in a state that never
existed in the database.
http://dev.mysql.com/doc/refman/5.0/en/innodb-consistent-read.html
Transaction concepts and locks are different. However, transaction used locks to help it to follow the ACID principles.
If you want to the table to prevent others to read/write at the same time point while you are read/write, you need a lock to do this.
If you want to make sure the data integrity and consistence, you had better use transactions.
I think mixed concepts of isolation levels in transactions with locks.
Please search isolation levels of transactions, SERIALIZE should be the level you want.
I had a similar problem when attempting a IF NOT EXISTS ... and then performing an INSERT which caused a race condition when multiple threads were updating the same table.
I found the solution to the problem here: How to write INSERT IF NOT EXISTS queries in standard SQL
I realise this does not directly answer your question but the same principle of performing an check and insert as a single statement is very useful; you should be able to modify it to perform your update.
I'd use a
START TRANSACTION WITH CONSISTENT SNAPSHOT;
to begin with, and a
COMMIT;
to end with.
Anything you do in between is isolated from the others users of your database if your storage engine supports transactions (which is InnoDB).
You are confused with lock & transaction. They are two different things in RMDB. Lock prevents concurrent operations while transaction focuses on data isolation. Check out this great article for the clarification and some graceful solution.
I have a single process that queries a table for records where PROCESS_IND = 'N', does some processing, and then updates the PROCESS_IND to 'Y'.
I'd like to allow for multiple instances of this process to run, but don't know what the best practices are for avoiding concurrency problems.
Where should I start?
The pattern I'd use is as follows:
Create columns "lockedby" and "locktime" which are a thread/process/machine ID and timestamp respectively (you'll need the machine ID when you split the processing between several machines)
Each task would do a query such as:
UPDATE taskstable SET lockedby=(my id), locktime=now() WHERE lockedby IS NULL ORDER BY ID LIMIT 10
Where 10 is the "batch size".
Then each task does a SELECT to find out which rows it has "locked" for processing, and processes those
After each row is complete, you set lockedby and locktime back to NULL
All this is done in a loop for as many batches as exist.
A cron job or scheduled task, periodically resets the "lockedby" of any row whose locktime is too long ago, as they were presumably done by a task which has hung or crashed. Someone else will then pick them up
The LIMIT 10 is MySQL specific but other databases have equivalents. The ORDER BY is import to avoid the query being nondeterministic.
Although I understand the intention I would disagree on going to row level locking immediately. This will reduce your response time and may actually make your situation worse. If after testing you are seeing concurrency issues with APL you should do an iterative move to “datapage” locking first!
To really answer this question properly more information would be required about the table structure and the indexes involved, but to explain further.
DOL, datarow locking uses a lot more locks than allpage/page level locking. The overhead in managing all the locks and hence the decrease of available memory due to requests for more lock structures within the cache will decrease performance and counter any gains you may have by moving to a more concurrent approach.
Test your approach without the move first on APL (all page locking ‘default’) then if issues are seen move to DOL (datapage first then datarow). Keep in mind when you switch a table to DOL all responses on that table become slightly worse, the table uses more space and the table becomes more prone to fragmentation which requires regular maintenance.
So in short don’t move to datarows straight off try your concurrency approach first then if there are issues use datapage locking first then last resort datarows.
You should enable row level locking on the table with:
CREATE TABLE mytable (...) LOCK DATAROWS
Then you:
Begin the transaction
Select your row with FOR UPDATE option (which will lock it)
Do whatever you want.
No other process can do anything to this row until the transaction ends.
P. S. Some mention overhead problems that can result from using LOCK DATAROWS.
Yes, there is overhead, though i'd hardly call it a problem for a table like this.
But if you switch to DATAPAGES then you may lock only one row per PAGE (2k by default), and processes whose rows reside in one page will not be able to run concurrently.
If we are talking of table with dozen of rows being locked at once, there hardly will be any noticeable performance drop.
Process concurrency is of much more importance for design like that.
The most obvious way is locking, if your database doesn't have locks, you could implement it yourself by adding a "Locked" field.
Some of the ways to simplify the concurrency is to randomize the access to unprocessed items, so instead of competition on the first item, they distribute the access randomly.
Convert the procedure to a single SQL statement and process multiple rows as a single batch. This is how databases are supposed to work.