Perl6-ish expression for the bits of an integer - raku

I've been trying to exercise my Perl 6 chops by looking at some golfing problems. One of them involved extracting the bits of an integer. I haven't been able to come up with a succinct way to write such an expression.
My "best" tries so far follow, using 2000 as the number. I don't care whether the most or least significant bit comes first.
A numeric expression:
map { $_ % 2 }, (2000, * div 2 ... * == 0)
A recursive anonymous subroutine:
{ $_ ?? ($_ % 2, |&?BLOCK($_ div 2)) !! () }(2000)
Converting to a string:
2000.fmt('%b') ~~ m:g/./
Of these, the first feels cleanest to me, but it would be really nice to be able to generate the bits in a single step, rather than mapping over an intermediate list.
Is there a cleaner, shorter, and/or more idiomatic way to get the bits, using a single expression? (That is, without writing a named function.)

The easiest way would be:
2000.base(2).comb
The .base method returns a string representation, and .comb splits it into characters - similar to your third method.

An imperative solution, least to most significant bit:
my $i = 2000; say (loop (; $i; $i +>= 1) { $i +& 1 })
The same thing rewritten using hyperoperators on a sequence:
say (2000, * +> 1 ...^ !*) >>+&>> 1

An alternative that is more useful when you need to change the base to anything above 36, is to use polymod with an infinite list of that base.
Most of the time you will have to reverse the order though.
say 2000.polymod(2 xx *);
# (0 0 0 0 1 0 1 1 1 1 1)
say 2000.polymod(2 xx *).reverse;
say [R,] 2000.polymod(2 xx*);
# (1 1 1 1 1 0 1 0 0 0 0)

Related

Given no modulus or if even/odd function, how would one check for an odd or even number?

I have recently sat a computing exam in university in which we were never taught beforehand about the modulus function or any other check for odd/even function and we have no access to external documentation except our previous lecture notes. Is it possible to do this without these and how?
Bitwise AND (&)
Extract the last bit of the number using the bitwise AND operator. If the last bit is 1, then it's odd, else it's even. This is the simplest and most efficient way of testing it. Examples in some languages:
C / C++ / C#
bool is_even(int value) {
return (value & 1) == 0;
}
Java
public static boolean is_even(int value) {
return (value & 1) == 0;
}
Python
def is_even(value):
return (value & 1) == 0
I assume this is only for integer numbers as the concept of odd/even eludes me for floating point values.
For these integer numbers, the check of the Least Significant Bit (LSB) as proposed by Rotem is the most straightforward method, but there are many other ways to accomplish that.
For example, you could use the integer division operation as a test. This is one of the most basic operation which is implemented in virtually every platform. The result of an integer division is always another integer. For example:
>> x = int64( 13 ) ;
>> x / 2
ans =
7
Here I cast the value 13 as a int64 to make sure MATLAB treats the number as an integer instead of double data type.
Also here the result is actually rounded towards infinity to the next integral value. This is MATLAB specific implementation, other platform might round down but it does not matter for us as the only behavior we look for is the rounding, whichever way it goes. The rounding allow us to define the following behavior:
If a number is even: Dividing it by 2 will produce an exact result, such that if we multiply this result by 2, we obtain the original number.
If a number is odd: Dividing it by 2 will result in a rounded result, such that multiplying it by 2 will yield a different number than the original input.
Now you have the logic worked out, the code is pretty straightforward:
%% sample input
x = int64(42) ;
y = int64(43) ;
%% define the checking function
% uses only multiplication and division operator, no high level function
is_even = #(x) int64(x) == (int64(x)/2)*2 ;
And obvisouly, this will yield:
>> is_even(x)
ans =
1
>> is_even(y)
ans =
0
I found out from a fellow student how to solve this simplistically with maths instead of functions.
Using (-1)^n :
If n is odd then the outcome is -1
If n is even then the outcome is 1
This is some pretty out-of-the-box thinking, but it would be the only way to solve this without previous knowledge of complex functions including mod.

How to calculate alternating sum of digits of an integer in Perl 6?

A number is divisible by 11 if its alternating sum of digits is
divisible by 11.
So, e.g. if number is 1595, +1 -5 +9 -5 == 0, so 1595 is divisible by 11. How to implement such a sum? Here is my solution, but it's too complex and works only if the number of digits is even.
my $number = 1595;
say [+] $number.comb.map({$^a - $^b});
What's the best way to do it?
say [+] 1595.comb Z* (1, -1, 1 ... *)
To break it down: .comb returns a list of characters, and Z* multiplies that list element-wise with the sequence on the RHS.
This sequence is a geometric sequence, which the ... series operator can deduce from the three elements. Since the zip operator Z stops at the shortest sequence, we don't have to take care to terminate the sequence on the RHS.
Another way to write the same thing is:
say [+] 1595.comb Z* (1, -* ... *)
Where -* is the explicit negation of the previous value, applied to the initial element to generate the next one.
You could also write that as
say [+] 1595.comb Z* (1, &prefix:<-> ... *)
The cross that Moritz uses is interesting (and quite pleasing) but you can also take chunks of a list. This is close to what you were trying initially. I think you were going toward rotor:
my $number = 1595;
say [+] $number.comb.rotor(2, :partial).map: { $^a.[0] - ($^a.[1] // 0) }
Notice that you get one argument to your block. That's the list. It's a bit ugly because the odd digit case makes $^a.[1] Nil which would give a warning.
Now that I've played with this a bit more I handle that with a signature so I can give $b a default. This is much better:
my $number = 1595;
say [+] $number
.comb
.rotor(2, :partial)
.map: -> ( $a, $b = 0 ) { $a - $b }
But you don't even need the rotor because the map will grab as many positional parameters as it needs (h/t to timotimo in the comments). This means you were really close and merely missed the signature:
my $number = 1595;
say [+] $number
.comb
.map: -> ( $a, $b = 0 ) { $a - $b }
The solution you have in the comment doesn't quite work for the odd number of digits cases:
say [+] $number.comb.rotor(2, :partial).map({[-] $_});
And, I know this problem wasn't really about divisors but I'm quite pleased that Perl 6 has a "divisible by" operator, the %%:
$ perl6
> 121 %% 11
True
> 122 %% 11
False
> 1595 %% 11
True
> 1596 %% 11
False
say [+] 1595.comb >>*>> (1,-1)
Similar to the Z* version but using the hyper meta operator looping effect on the right hand side (if the left hand side has less than 2 digits you are fine).
Here's my solution.
say [+] 15956.comb.kv.map( (-1) ** * * * ); # 6
And a more explicit version.
say [+] 15956.comb.kv.map({ $^b * (-1) ** $^a }); # 6
UPD: Yet another solution.
say - [+] 15956.comb(2)>>.comb.map({[R-] $_}); # 6

How to test a bit in a decimal number

I have a set of decimal numbers. I need to check if a specific bit is set in each of them. If the bit is set, I need to return 1, otherwise return 0.
I am looking for a simple and fast way to do that.
Say, for example, I am checking if the third bit is set. I can do (number AND (2^2)), it will return 4 if the bit is set, otherwise it will return 0. How do I make it to return 1 instead of 4?
Thank you!
if ((number AND (2^bitnumber) <> 0) then return 1 else return 0 end if
If you can change your return type to boolean then this is more elegant
return ((number AND (2^bitnumber)) <> 0)
While the division solution is a simple one, I would think a bit-shift operation would be more efficient. You'd have to test it to be sure, though. For instance, if you are using 1 based bit indexes, you could do this:
Dim oneOrZero As Integer = (k And 2 ^ (n - 1)) >> (n - 1)
(Where k is the number and n is the bit index). Of, if you are using 0 based bit indexes, you could just do this:
Dim oneOrZero As Integer = (k And 2 ^ n) >> n
Sorry, guys, I am too slow today.
To test a bit number "n" in a decimal number "k":
(k AND 2^(n-1))/(2^(n-1))
will return 1 if the bit is set, otherwise will return 0.
=====================================================
Hi again, guys!
I compared the performance of the three proposed solutions with zero-based indexes, and here are the results:
"bit-shift solution" - 8.31 seconds
"if...then solution" - 8.44 seconds
"division solution" - 9.41 seconds
The times are average of the four consecutive runs.
Surprisingly for me, the second solution outperformed the third one.
However, after I modified the "division solution" this way:
p = 2 ^ n : oneOrZero = (k And p) / p
it started to run in 7.48 seconds.
So, this is the fastest of the proposed solutions (despite of what Keith says :-).
Thanks everybody for the help!
I really don't know if it can help anyone more than the above, but, here we go.
When I need to fast check a bit in number I compare the decimal-value of this bit directly.
I mean, if I would need to see of the 6th bit is on (32), I check its decimal value, like this:
if x and 32 = 32 then "the bit is ON"
Try for instance check 38 with 32, 4 and 2... and the other bits.
You will see only the actual bits turned on.
I hope it can help.
Yes! Simply use a bit mask. I enumerate the bits, then AND the number with the bit value. Very little math on the PC side as it uses lookup tables instead. The AND basically shuts off all the other bits except the one you are interested in. Then you check it against itself to see if it's on/off.
Enum validate
bit1 = 1
bit2 = 2
bit3 = 4
bit4 = 8
bit5 = 16
bit6 = 32
bit7 = 64
bit8 = 128
End Enum
If num And validate.bit3 = validate.bit3 Then true

Recognizing when to use the modulus operator

I know the modulus (%) operator calculates the remainder of a division. How can I identify a situation where I would need to use the modulus operator?
I know I can use the modulus operator to see whether a number is even or odd and prime or composite, but that's about it. I don't often think in terms of remainders. I'm sure the modulus operator is useful, and I would like to learn to take advantage of it.
I just have problems identifying where the modulus operator is applicable. In various programming situations, it is difficult for me to see a problem and realize "Hey! The remainder of division would work here!".
Imagine that you have an elapsed time in seconds and you want to convert this to hours, minutes, and seconds:
h = s / 3600;
m = (s / 60) % 60;
s = s % 60;
0 % 3 = 0;
1 % 3 = 1;
2 % 3 = 2;
3 % 3 = 0;
Did you see what it did? At the last step it went back to zero. This could be used in situations like:
To check if N is divisible by M (for example, odd or even)
or
N is a multiple of M.
To put a cap of a particular value. In this case 3.
To get the last M digits of a number -> N % (10^M).
I use it for progress bars and the like that mark progress through a big loop. The progress is only reported every nth time through the loop, or when count%n == 0.
I've used it when restricting a number to a certain multiple:
temp = x - (x % 10); //Restrict x to being a multiple of 10
Wrapping values (like a clock).
Provide finite fields to symmetric key algorithms.
Bitwise operations.
And so on.
One use case I saw recently was when you need to reverse a number. So that 123456 becomes 654321 for example.
int number = 123456;
int reversed = 0;
while ( number > 0 ) {
# The modulus here retrieves the last digit in the specified number
# In the first iteration of this loop it's going to be 6, then 5, ...
# We are multiplying reversed by 10 first, to move the number one decimal place to the left.
# For example, if we are at the second iteration of this loop,
# reversed gonna be 6, so 6 * 10 + 12345 % 10 => 60 + 5
reversed = reversed * 10 + number % 10;
number = number / 10;
}
Example. You have message of X bytes, but in your protocol maximum size is Y and Y < X. Try to write small app that splits message into packets and you will run into mod :)
There are many instances where it is useful.
If you need to restrict a number to be within a certain range you can use mod. For example, to generate a random number between 0 and 99 you might say:
num = MyRandFunction() % 100;
Any time you have division and want to express the remainder other than in decimal, the mod operator is appropriate. Things that come to mind are generally when you want to do something human-readable with the remainder. Listing how many items you could put into buckets and saying "5 left over" is good.
Also, if you're ever in a situation where you may be accruing rounding errors, modulo division is good. If you're dividing by 3 quite often, for example, you don't want to be passing .33333 around as the remainder. Passing the remainder and divisor (i.e. the fraction) is appropriate.
As #jweyrich says, wrapping values. I've found mod very handy when I have a finite list and I want to iterate over it in a loop - like a fixed list of colors for some UI elements, like chart series, where I want all the series to be different, to the extent possible, but when I've run out of colors, just to start over at the beginning. This can also be used with, say, patterns, so that the second time red comes around, it's dashed; the third time, dotted, etc. - but mod is just used to get red, green, blue, red, green, blue, forever.
Calculation of prime numbers
The modulo can be useful to convert and split total minutes to "hours and minutes":
hours = minutes / 60
minutes_left = minutes % 60
In the hours bit we need to strip the decimal portion and that will depend on the language you are using.
We can then rearrange the output accordingly.
Converting linear data structure to matrix structure:
where a is index of linear data, and b is number of items per row:
row = a/b
column = a mod b
Note above is simplified logic: a must be offset -1 before dividing & the result must be normalized +1.
Example: (3 rows of 4)
1 2 3 4
5 6 7 8
9 10 11 12
(7 - 1)/4 + 1 = 2
7 is in row 2
(7 - 1) mod 4 + 1 = 3
7 is in column 3
Another common use of modulus: hashing a number by place. Suppose you wanted to store year & month in a six digit number 195810. month = 195810 mod 100 all digits 3rd from right are divisible by 100 so the remainder is the 2 rightmost digits in this case the month is 10. To extract the year 195810 / 100 yields 1958.
Modulus is also very useful if for some crazy reason you need to do integer division and get a decimal out, and you can't convert the integer into a number that supports decimal division, or if you need to return a fraction instead of a decimal.
I'll be using % as the modulus operator
For example
2/4 = 0
where doing this
2/4 = 0 and 2 % 4 = 2
So you can be really crazy and let's say that you want to allow the user to input a numerator and a divisor, and then show them the result as a whole number, and then a fractional number.
whole Number = numerator/divisor
fractionNumerator = numerator % divisor
fractionDenominator = divisor
Another case where modulus division is useful is if you are increasing or decreasing a number and you want to contain the number to a certain range of number, but when you get to the top or bottom you don't want to just stop. You want to loop up to the bottom or top of the list respectively.
Imagine a function where you are looping through an array.
Function increase Or Decrease(variable As Integer) As Void
n = (n + variable) % (listString.maxIndex + 1)
Print listString[n]
End Function
The reason that it is n = (n + variable) % (listString.maxIndex + 1) is to allow for the max index to be accounted.
Those are just a few of the things that I have had to use modulus for in my programming of not just desktop applications, but in robotics and simulation environments.
Computing the greatest common divisor
Determining if a number is a palindrome
Determining if a number consists of only ...
Determining how many ... a number consists of...
My favorite use is for iteration.
Say you have a counter you are incrementing and want to then grab from a known list a corresponding items, but you only have n items to choose from and you want to repeat a cycle.
var indexFromB = (counter-1)%n+1;
Results (counter=indexFromB) given n=3:
`1=1`
`2=2`
`3=3`
`4=1`
`5=2`
`6=3`
...
Best use of modulus operator I have seen so for is to check if the Array we have is a rotated version of original array.
A = [1,2,3,4,5,6]
B = [5,6,1,2,3,4]
Now how to check if B is rotated version of A ?
Step 1: If A's length is not same as B's length then for sure its not a rotated version.
Step 2: Check the index of first element of A in B. Here first element of A is 1. And its index in B is 2(assuming your programming language has zero based index).
lets store that index in variable "Key"
Step 3: Now how to check that if B is rotated version of A how ??
This is where modulus function rocks :
for (int i = 0; i< A.length; i++)
{
// here modulus function would check the proper order. Key here is 2 which we recieved from Step 2
int j = [Key+i]%A.length;
if (A[i] != B[j])
{
return false;
}
}
return true;
It's an easy way to tell if a number is even or odd. Just do # mod 2, if it is 0 it is even, 1 it is odd.
Often, in a loop, you want to do something every k'th iteration, where k is 0 < k < n, assuming 0 is the start index and n is the length of the loop.
So, you'd do something like:
int k = 5;
int n = 50;
for(int i = 0;i < n;++i)
{
if(i % k == 0) // true at 0, 5, 10, 15..
{
// do something
}
}
Or, you want to keep something whitin a certain bound. Remember, when you take an arbitrary number mod something, it must produce a value between 0 and that number - 1.

Weird Objective-C Mod Behavior for Negative Numbers

So I thought that negative numbers, when mod'ed should be put into positive space... I cant get this to happen in objective-c
I expect this:
-1 % 3 = 2
0 % 3 = 0
1 % 3 = 1
2 % 3 = 2
But get this
-1 % 3 = -1
0 % 3 = 0
1 % 3 = 1
2 % 3 = 2
Why is this and is there a workaround?
result = n % 3;
if( result < 0 ) result += 3;
Don't perform extra mod operations as suggested in the other answers. They are very expensive and unnecessary.
In C and Objective-C, the division and modulus operators perform truncation towards zero. a / b is floor(a / b) if a / b > 0, otherwise it is ceiling(a / b) if a / b < 0. It is always the case that a == (a / b) * b + (a % b), unless of course b is 0. As a consequence, positive % positive == positive, positive % negative == positive, negative % positive == negative, and negative % negative == negative (you can work out the logic for all 4 cases, although it's a little tricky).
If n has a limited range, then you can get the result you want simply by adding a known constant multiple of 3 that is greater that the absolute value of the minimum.
For example, if n is limited to -1000..2000, then you can use the expression:
result = (n+1002) % 3;
Make sure the maximum plus your constant will not overflow when summed.
We have a problem of language:
math-er-says: i take this number plus that number mod other-number
code-er-hears: I add two numbers and then devide the result by other-number
code-er-says: what about negative numbers?
math-er-says: WHAT? fields mod other-number don't have a concept of negative numbers?
code-er-says: field what? ...
the math person in this conversations is talking about doing math in a circular number line. If you subtract off the bottom you wrap around to the top.
the code person is talking about an operator that calculates remainder.
In this case you want the mathematician's mod operator and have the remainder function at your disposal. you can convert the remainder operator into the mathematician's mod operator by checking to see if you fell of the bottom each time you do subtraction.
If this will be the behavior, and you know that it will be, then for m % n = r, just use r = n + r. If you're unsure of what will happen here, use then r = r % n.
Edit: To sum up, use r = ( n + ( m % n ) ) % n
I would have expected a positive number, as well, but I found this, from ISO/IEC 14882:2003 : Programming languages -- C++, 5.6.4 (found in the Wikipedia article on the modulus operation):
The binary % operator yields the remainder from the division of the first expression by the second. .... If both operands are nonnegative then the remainder is nonnegative; if not, the sign of the remainder is implementation-defined
JavaScript does this, too. I've been caught by it a couple times. Think of it as a reflection around zero rather than a continuation.
Why: because that is the way the mod operator is specified in the C-standard (Remember that Objective-C is an extension of C). It confuses most people I know (like me) because it is surprising and you have to remember it.
As to a workaround: I would use uncleo's.
UncleO's answer is probably more robust, but if you want to do it on a single line, and you're certain the negative value will not be more negative than a single iteration of the mod (for example if you're only ever subtracting at most the mod value at any time) you can simplify it to a single expression:
int result = (n + 3) % 3;
Since you're doing the mod anyway, adding 3 to the initial value has no effect unless n is negative (but not less than -3) in which case it causes result to be the expected positive modulus.
There are two choices for the remainder, and the sign depends on the language. ANSI C chooses the sign of the dividend. I would suspect this is why you see Objective-C doing so also. See the wikipedia entry as well.
Not only java script, almost all the languages shows the wrong answer'
what coneybeare said is correct, when we have mode'd we have to get remainder
Remainder is nothing but which remains after division and it should be a positive integer....
If you check the number line you can understand that
I also face the same issue in VB and and it made me to forcefully add extra check like
if the result is a negative we have to add the divisor to the result
Instead of a%b
Use: a-b*floor((float)a/(float)b)
You're expecting remainder and are using modulo. In math they are the same thing, in C they are different. GNU-C has Rem() and Mod(), objective-c only has mod() so you will have to use the code above to simulate rem function (which is the same as mod in the math world, but not in the programming world [for most languages at least])
Also note you could define an easy to use macro for this.
#define rem(a,b) ((int)(a-b*floor((float)a/(float)b)))
Then you could just use rem(-1,3) in your code and it should work fine.