Given that I train a model; save it off with metagraph/save.Saver, and the load that graph into a new script/process to test against test data, what is the best way to make sure I only iterate over the test data once?
With my training data, I want to be able to iterate over the entire data set for an arbitrary number of iterations. I use
tf.train.string_input_producer()
to drive a queue of loading files for training, so I can safely leave num_epochs as default (=None) and let other controls drive training termination.
However, when I run the graph for evaluation, I just want to the evaluate the test set once (and gather the appropriate statistics).
Initial attempted solution:
Make a tensor for Epochs, and pass that into tf.train.string_input_producer, and then tf.Assign it to the appropriate value based on test/train.
But:
tf.train.string_input_producer only takes integers as num_epochs, so this isn't possible...unless I'm missing something.
Further notes: I use
tf.train.batch()
to read-in test/train data that has been serialized into protocol buffers (https://www.tensorflow.org/versions/r0.11/how_tos/reading_data/index.html#file-formats), so I have minimal visibility into how the data is loaded and how far along it is.
tf.train.batch apparently will throw tf.errors.OutOfRangeError, but I'm not clear how to catch that successfully, or if that is even what I really want to do. I tried a very naive
try...except...finally
(like in https://www.tensorflow.org/versions/r0.11/how_tos/reading_data/index.html#creating-threads-to-prefetch-using-queuerunner-objects), which didn't catch the error from tf.train.batch.
Related
I have a dataset of images that is too large to store on memory. What I plan to do is loading pairs of the paths to the images and corresponding labels as my dataset, then use a generator function during training to convert only the paths in my batch to images before feeding them to the network.
Is data.Dataset.map() a good way to do this? Does it return a mapping function, that can be applied only to the current batch during training, or does it perform the mapping operation on the whole dataset at once, occupying lots of memory? In the second case, what is an alternative?
A few tutorials I went through made me believe the mapping takes place per batch, but this quote from the documentation suggests a whole new dataset is returned: "This transformation applies map_func to each element of this dataset, and returns a new dataset containing the transformed elements, in the same order as they appeared in the input."
The key thing to understand here is that tf.data.Dataset objects are generally "lazy" in that elements are only processed as needed (in a batched Dataset, elements == batches). When iterating over a dataset, this usually means that only the next requested element is prepared and then returned. So to answer your question: When using map to load data from disk, and applying this to a dataset of file names, only one batch of the loaded data should be stored in memory at the same time, and you should be able to process the dataset just fine. However, this can significantly slow down training if loading the files is a bottleneck in terms of speed.
There are some exceptions though, for example:
When you use the shuffle method, you need to provide a buffer size, and AFAIK the entire buffer is preprocessed at once. This can lead to issues since you want a large buffer for good shuffling, but this requires more memory. Thus you probably want to use shuffle before applying map.
The prefetch method results in multiple elements being prepared in order to avoid the model having to wait for the next batch to be processed.
Note that this lazy behavior also has some disadvantages, e.g.
You can only iterate over datasets sequentially; there is no random access.
A dataset doesn't even know how many elements it contains (this would require iterating over the entire set).
Different calls of tf.data.Dataset.take() return different batches from the given dataset. Are those samples chosen randomly or is there another mechanism at play?
This is all the more confusing that the documentation makes no reference as to the randomness of the sampling.
Most probably, you might be using data.shuffle() before tf.data.Dataset.take().
Commenting that out should make the iterator behave as intended: take the same results over and over for each iterator run.
-- Or if you used an api that automatically shuffles without asking like image_dataset_from_directory
shuffle: Whether to shuffle the data. Default: True.
If set to False, sorts the data in alphanumeric order.
You would have to explicitly set shuffle=False when creating the dataset
I am a newbie to this domain. But from what I have seen in my notebook is that the take() does pick random samples. For instance, in the image shown here, I had just called image_dataset_from_directory() before calling take(), so no shuffling preceded the take op, still I see different samples on every run. Pls correct me if I am wrong, will help my understanding as well.
I have 4 (or more) models (same structure but different training data). Now I want to ensemble them to make a prediction. I want to pre-load the models and then predict one input message (one message at a time) in parallel via multiprocess. However, the program always stops at "session.run" step. I could not figure it out why.
I tried passing all arguments to the function in each process, as shown in the code below. I also tried using a Queue object and put all the data (except the model object) in the queue. I also tried to set the number of process to 1. It made no difference.
with Manager() as manager:
first_level_test_features=manager.list()
procs =[]
for id in range(4):
p = Process(target=predict, args=(id, (message, models, configs, vocabs, emoji_dict,first_level_test_features)))
procs.append(p)
p.start()
for p in procs:
p.join()
I did not get any error message since it is just stuck there. I would expect the program can start multiple processes and each process uses the model pass to it to make the prediction.
I am unsure how session sharing along different Processes would work, and this is probably where your issue comes from. Given the way TensorFlow works, I would advise implementing the ensemble call as a graph operation, so that it can be run through a single session.run call, with TF handling the parallelization of computations wherever possible.
In practice, if you have symbolic tensors representing the models' predictions, you could use a TF operation to aggregate them (tf.concat, tf.reduce_mean, tf.add_n... whichever suits your design) and end up with a single symbolic tensor representing the ensemble prediction.
I hope this helps; if not, please provide some more details as to what your setting is, notably which form your models have.
I am trying to get deterministic behaviour from tf.train.shuffle_batch(). I could, instead, use tf.train.batch() which works fine (always the same order of elements), but I need to get examples from multiple tf-records and so I am stuck with shuffle_batch().
I am using:
random.seed(0)
np.random.seed(0)
tf.set_random_seed(0)
data_entries = tf.train.shuffle_batch(
[data], batch_size=batch_size, num_threads=1, capacity=512,
seed=57, min_after_dequeue=32)
But every time I restart my script I get slightly different results (not completely different, but about 20% of the elements are in the wrong order).
Is there anything I am missing?
Edit: Solved it! See my answer below!
Maybe I misunderstood something, but you can collect multiple tf-records in a queue with tf.train.string_input_producer(), then read the examples into tensors and finally use tf.train.batch().
Take a look at CIFAR-10 input.
Answering my own question:
First the reason shuffle_batch is non deterministic:
The time until I request a batch is inherently random.
In that time, a random number of tensors are available.
Tensorflow calls a shuffle operation that is seeded but depending on the number of items, it will return a different order.
So no matter the seeding, the order is always different unless the number of elements is constant. So the solution is to keep the number of elements constant, but how we do it?
By setting capacity=min_after_dequeue+batch_size. This will force Tensorflow to fill up the queue until it reaches full capacity before dequeuing an item. Therefore, at the time of the shuffle operation, we have capacity many items which is a constant number.
So why are we doing this? Because one tf.record contains many examples but we want examples from multiple tf.records. With a normal batch we would first get all the examples of one record and then of the next one. This also means we should set min_after_dequeue to something larger than the number of items in one tf.record. In my example, I have 50 examples in one file so I set min_after_dequeue=2048.
Alternatively, we can also shuffle the examples before creating the tf.records, but this was not possible for me because I read tf.records from multiple directories (each with their own dataset).
Last Note: You should also use a batch size of 1 to be super save.
I'm working on a logo detection algorithm using the Faster-RCNN model with the Tensorflow object detection api.
My dataset is alphabetically ordered (so there are a hundred adidas logo, then hundred apple logo etc.). And i would like it to be shuffled while training.
I've put some values in the config file:
train_input_reader:{
shuffle: true
queue_capacity: some value
min_after_dequeue : some other value}
However whatever are the values, I'm putting in, algorithm is at first training on all of the a's logos (adidas, apple and so on) and only a lapse of time after starting to see the b's logos (bmw etc.) and the c's one etc.
Of course I could just shuffle my input dataset directly, but I would like to understand the logic behind it.
PS: I've seen this post about shuffling and min_after_dequeue, but I still dont quite get it. My batch size is 1 so it shouldn't be using tf.train.shuffle_batch() but only tf.RandomShuffleQueue
My training dataset size is 5000 and if I write min_after_dequeue: 4000 or 5000 it is still not shuffled right. Why though?
Update:
#AllenLavoie It's a bit hard for me; as there is a lot of dependencies and I'm new to Tensorflow.
But in the end the queue is constructed by
tf.contrib.slim.parallel_reader.parallel_read( _, string_tensor = parallel_reader.parallel_read(
config.input_path,
reader_class=tf.TFRecordReader,
num_epochs=(input_reader_config.num_epochs
if input_reader_config.num_epochs else None),
num_readers=input_reader_config.num_readers,
shuffle=input_reader_config.shuffle,
dtypes=[tf.string, tf.string],
capacity=input_reader_config.queue_capacity,
min_after_dequeue=input_reader_config.min_after_dequeue)
It seems that when I'm putting num_readers = 1 in the config file the dataset is finally shuffling as I want, (at least in the beginning), but when there are more somehow on the start the logos are getting in the alphabetical order.
I recommend shuffling the dataset prior to training. The way shuffling currently happens is imperfect and my guess at what is happening is that at the beginning the queue starts off empty and only gets examples that start with 'A' --- after a while it may be more shuffled, but there is no getting around the beginning part when the queue hasn't been filled yet.