word2vec - get nearest words - tensorflow

Reading the tensorflow word2vec model output how can I output the words related to a specific word ?
Reading the src : https://github.com/tensorflow/tensorflow/blob/r0.11/tensorflow/examples/tutorials/word2vec/word2vec_basic.py can view how the image is plotted.
But is there a data structure (e.g dictionary) created as part of training the model that allows to access nearest n words closest to given word ?
For example if word2vec generated image :
image src: https://www.tensorflow.org/versions/r0.11/tutorials/word2vec/index.html
In this image the words 'to , he , it' are contained in same cluster, is there a function which takes as input 'to' and outputs 'he , it' (in this case n=2) ?

This approach apply to word2vec in general. If you can save the word2vec in text/binary file like google/GloVe word vector. Then what you need is just the gensim.
To install:
Via github
Python code:
from gensim.models import Word2Vec
gmodel=Word2Vec.load_word2vec_format(fname)
ms=gmodel.most_similar('good',10)
for x in ms:
print x[0],x[1]
However this will search all the words to give the results, there are approximate nearest neighbor (ANN) which will give you the result faster but with a trade off in accuracy.
In the latest gensim, annoy is used to perform the ANN, see this notebooks for more information.
Flann is another library for Approximate Nearest Neighbors.

I will assume that you don't want to use gensim, and would prefer to stick with tensorflow. In that case, I'll offer two options
Option 1 - Tensorboard:
If you are just trying to do this from an exploratory standpoint, I would suggest using Tensorboard's embedding visualizer to search for the closest embeddings. It provides a cool interface and you can use both cosine and euclidian distances with a set number of neighbors.
Link to Tensorflow documentation
Option 2 - Direct Calculation
Within the word2vec_basic.py file, there is an example of how they are calculating closest words, and you could go ahead and use that if you mess with the function a little bit. The following is found in the graph itself:
# Compute the cosine similarity between minibatch examples and all embeddings.
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(
normalized_embeddings, valid_dataset)
similarity = tf.matmul(
valid_embeddings, normalized_embeddings, transpose_b=True)
Then, during training (every 10000 steps) they run this next bit of code (while the session is active). When they call similarity.eval() it is getting the literal numpy array evaluation of the similarity tensor in the graph.
# Note that this is expensive (~20% slowdown if computed every 500 steps)
if step % 10000 == 0:
sim = similarity.eval()
for i in xrange(valid_size):
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8 # number of nearest neighbors
nearest = (-sim[i, :]).argsort()[1:top_k+1]
log_str = "Nearest to %s:" % valid_word
for k in xrange(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str = "%s %s," % (log_str, close_word)
print(log_str)
If you want to adapt this for yourself, you will have to do some finessing with changing reverse_dictionary[valid_examples[i]] to be the word/words idxs that you want to get the k-closest words for.

Get gensim and use similar_by_word method on gensim.models.Word2Vec model.
similar_by_word takes 3 parameters,
The input word
n - for top n similar words (optional, default=10)
restrict_vocab (optional, default=None)
Example
import gensim, nltk
class FileToSent(object):
"""A class to load a text file efficiently """
def __init__(self, filename):
self.filename = filename
# To remove stop words (optional)
self.stop = set(nltk.corpus.stopwords.words('english'))
def __iter__(self):
for line in open(self.filename, 'r'):
ll = [i for i in unicode(line, 'utf-8').lower().split() if i not in self.stop]
yield ll
Then depending on your input sentences (sentence_file.txt),
sentences = FileToSent('sentence_file.txt')
model = gensim.models.Word2Vec(sentences=sentences, min_count=2, hs=1)
print model.similar_by_word('hack', 2) # Get two most similar words to 'hack'
# [(u'debug', 0.967338502407074), (u'patch', 0.952264130115509)] (Output specific to my dataset)

Related

Getting nans for gradient

I am trying to create a search relevance model where I take the dot product between query vector and resulting documents. I add a positional bias term on top to take into account the fact that position 1 is more likely to be clicked on. The final (unnormalised) log likelihood calculation is as follows:
query = self.query_model(query_input_ids, query_attention_mask)
docs = self.doc_model(doc_input_ids, doc_attention_mask)
positional_bias = self.position_model()
if optimizer_idx is not None:
if optimizer_idx == 0:
docs = docs.detach()
positional_bias = positional_bias.clone().detach()
elif optimizer_idx == 1:
query = query.detach()
positional_bias = positional_bias.clone().detach()
else:
query = query.detach()
docs = docs.detach()
similarity = (docs # query.unsqueeze(-1)).squeeze()
click_log_lik = (similarity + positional_bias)\
.reshape(doc_mask.shape)\
.masked_fill_((1 - doc_mask).bool(), float("-inf"))
The query and doc model is simply a distilbert model with a projection layer on top of CLS token. The models can be seen here: https://pastebin.com/g21g9MG3
When inspecting the first gradient descent step, it has nans, but only for the query model and not the doc model. My hypothesis is that normalizing the return values for doc and query models (return F.normalize(out, dim=-1)) is somehow playing up with the gradients.
Does anyone know 1. If my hypothesis is true and more importantly 2. How can I rectify nan gradients?.
Additional Info:
None of the losses are inf or nan.
query is BS x 768
docs is BS x DOC_RESULTS x 768
positional_bias is DOC_RESULTS
DOC_RESULTS is 10 in my case.
The masked_fill in the last line is because occasionally I have less than 10 data points for a query.
Update 1
The following changes made no difference to nans:
Changing masked_fill from -inf to 1e5.
Changing the projection from F.normalize(out, dim=-1) to out / 100.
Removed positional bias altogether with again no luck.
If it helps anyone, and you come across this while using Transformers this is what I did:
So in the end the bug was due to the fact that I was masking away nan's. Since I had some documents with zero length, the output of the transformer was nan. I was hoping that masked_fill would fix this problem, but it doesn't. The solution in my case was to only put non-zero length sequences through transformers, and then append with zeros to fill the batch size.

Is it possible to train YOLO (any version) for a single class where the image has text data. (find region of equations)

I am wondering if YOLO (any version, specially the one with accuracy, not speed) can be trained on the text data. What I am trying to do is to find the Region in the text image where any equation is present.
For example, I want to find the 2 of the Gray regions of interest in this image so that I can outline and eventually, crop the equations separately.
I am asking this questions because :
First of all I have not found a place where the YOLO is used for text data.
Secondly, how can we customise for low resolution unlike the (416,416) as all the images are either cropped or horizontal mostly in (W=2H) format.
I have implemented the YOLO-V3 version for text data but using OpenCv which is basically for CPU. I want to train the model from scratch.
Please help. Any of the Keras, Tensorflow or PyTorch would do.
Here is the code I used for implementing in OpenCv.
net = cv2.dnn.readNet(PATH+"yolov3.weights", PATH+"yolov3.cfg") # build the model. NOTE: This will only use CPU
layer_names = net.getLayerNames() # get all the layer names from the network 254 layers in the network
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] # output layer is the
# 3 output layers in otal
blob = cv2.dnn.blobFromImage(image=img, scalefactor=0.00392, size=(416,416), mean=(0, 0, 0), swapRB=True,)
# output as numpy array of (1,3,416,416). If you need to change the shape, change it in the config file too
# swap BGR to RGB, scale it to a threshold, resize, subtract it from the mean of 0 for all the RGB values
net.setInput(blob)
outs = net.forward(output_layers) # list of 3 elements for each channel
class_ids = [] # id of classes
confidences = [] # to store all the confidence score of objects present in bounding boxes if 0, no object is present
boxes = [] # to store all the boxes
for out in outs: # get all channels one by one
for detection in out: # get detection one by one
scores = detection[5:] # prob of 80 elements if the object(s) is/are inside the box and if yes, with what prob
class_id = np.argmax(scores) # Which class is dominating inside the list
confidence = scores[class_id]
if confidence > 0.1: # consider only those boxes which have a prob of having an object > 0.55
# grid coordinates
center_x = int(detection[0] * width) # centre X of grid
center_y = int(detection[1] * height) # Center Y of grid
w = int(detection[2] * width) # width
h = int(detection[3] * height) # height
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h]) # get all the bounding boxes
confidences.append(float(confidence)) # get all the confidence score
class_ids.append(class_id) # get all the clas ids
Being an object detector Yolo can be used for specific text detection only, not for detecting any text that might be present in the image.
For example Yolo can be trained to do text based logo detection like this:
I want to find the 2 of the Gray regions of interest in this image so
that I can outline and eventually, crop the equations separately.
Your problem statement talks about detecting any equation (math formula) that's present in the image so it can't be done using Yolo alone. I think mathpix is similar to your use-case. They will be using OCR (Optical Character Recognition) system trained and fine tuned towards their use-case.
Eventually to do something like mathpix, OCR system customised for your use case is what you need. There won't be any ready ready made solution out there for this. You'll have to build one.
Proposed Methods:
Mathematical Formula Detection in Heterogeneous Document Images
A Simple Equation Region Detector for Printed Document Images in Tesseract
Note: Tesseract as it is can't be used because it is a pre-trained model trained for reading any character. You can refer 2nd paper to train tesseract towards fitting your use case.
To get some idea about OCR, you can read about it here.
EDIT:
So idea is to build your own OCR to detect something that constitutes equation/math formula rather than detecting every character. You need to have data set where equations are marked. Basically you look for region with math symbols(say summation, integration etc.).
Some Tutorials to train your own OCR:
Tesseract training guide
Creating OCR pipeline using CV and DL
Build OCR pipeline
Build Your OCR
Attention OCR
So idea is that you follow these tutorials to get to know how to train
and build your OCR for any use case and then you read research papers
I mentioned above and also some of the basic ideas I gave above to
build OCR towards your use case.

Limited range for TensorFlow Universal Sentence Encoder Lite embeddings?

Starting from the universal-sentence-encoder in TensorFlow.js, I noticed that the range of the numbers in the embeddings wasn't what I expected. I was expecting some distribution between [0-1] or [-1,1] but don't see either of these.
For the sentence "cats are great!" here's a visualization, where each dimension is projected onto a scale from [-0.5, 0.5]:
Here's the same kind of visualization for "i wonder what this sentence's embedding will be" (the pattern is similar for the first ~10 sentences I tried):
To debug, I looked at whether the same kind of thing comes up in the demo Colab notebook, and it seems like it is. Here's what I see if I see for the range of the embeddings for those two sentences:
# NEW: added this, with different messages
messages = ["cats are great!", "sometimes models are confusing"]
values, indices, dense_shape = process_to_IDs_in_sparse_format(sp, messages)
with tf.Session() as session:
session.run([tf.global_variables_initializer(), tf.tables_initializer()])
message_embeddings = session.run(
encodings,
feed_dict={input_placeholder.values: values,
input_placeholder.indices: indices,
input_placeholder.dense_shape: dense_shape})
for i, message_embedding in enumerate(np.array(message_embeddings).tolist()):
print("Message: {}".format(messages[i]))
print("Embedding size: {}".format(len(message_embedding)))
message_embedding_snippet = ", ".join(
(str(x) for x in message_embedding[:3]))
print("Embedding: [{}, ...]\n".format(message_embedding_snippet))
# NEW: added this, to show the range of the embedding output
print("Embedding range: [{}, {}]".format(min(message_embedding), max(message_embedding)))
And the output shows:
Message: cats are great!
Embedding range: [-0.05904272198677063, 0.05903803929686546]
Message: sometimes models are confusing
Embedding range: [-0.060731519013643265, 0.06075377017259598]
So this again isn't what I'm expecting - the range is more narrow than I'd expect. I thought this might be a TF convention that I missed, but couldn't see it in the TFHub page or the guide to text embeddings or in the paper so am not sure where else to look without digging into the training code.
The colab notebook example code has an example sentence that says:
Universal Sentence Encoder embeddings also support short paragraphs.
There is no hard limit on how long the paragraph is. Roughly, the
longer the more 'diluted' the embedding will be.
But the range of the embedding is roughly the same for all the other examples in the colab, even one word examples.
I'm assuming this range is not just arbitrary, and it does make sense to me that the range is centered in zero and small, but I'm trying to understand how this scale came to be.
The output of the universal sentence encoder is a vector of length 512, with an L2 norm of (approximately) 1.0. You can check this by calculating the inner product
ip = 0
for i in range(512):
ip += message_embeddings[0][i] * message_embeddings[0][i]
print(ip)
> 1.0000000807544893
The implications are that:
Most values are likely to be in a narrow range centered around zero
The largest possible single value in the vector is 1.0 - and this would only happen if all other values are exactly 0.
Similarly the smallest possible value is -1.
If we take a random vector of length 512, with values distributed uniformly, and then normalize it to unit magnitude, we expect to see values in a range similar to what you see.
rand_uniform = np.random.uniform(-1, 1, 512)
l2 = np.linalg.norm(rand_uniform)
plt.plot(rand_uniform / l2, 'b.')
axes = plt.gca()
axes.set_ylim([-0.5, 0.5])
Judging visually, the distribution of excitations does not look uniform, but rather is biased toward extremes.

Any way to extract the exhaustive vocabulary of the google universal sentence encoder large?

I have some sentences for which I am creating an embedding and it works great for similarity searching unless there are some truly unusual words in the sentence.
In that case, the truly unusual words in fact contain the very most similarity information of any words in the sentence BUT all of that information is lost during embedding due to the fact that the word is apparently not in the vocabulary of the model.
I'd like to get a list of all of the words known by the GUSE embedding model so that I can mask those known words out of my sentence, leaving only the "novel" words.
I can then do an exact word search for those novel words in my target corpus and achieve usability for my similar sentence searching.
e.g. "I love to use Xapian!" gets embedded as "I love to use UNK".
If I just do a keyword search for "Xapian" instead of a semantic similarity search, I'll get much more relevant results than I would using GUSE and vector KNN.
Any ideas on how I can extract the vocabulary known/used by GUSE?
I combine the earlier answer from #Roee Shenberg and the solution provided here to come up with solution, which is applicable for USE v4:
import importlib
loader_impl = importlib.import_module('tensorflow.python.saved_model.loader_impl')
saved_model = loader_impl.parse_saved_model("/tmp/tfhub_modules/063d866c06683311b44b4992fd46003be952409c/")
graph = saved_model.meta_graphs[0].graph_def
fns = [f for f in saved_model.meta_graphs[0].graph_def.library.function if "ptb" in str(f).lower()];
print(len(fns)) # should be 1
nodes_with_sp = [n for n in fns[0].node_def if n.name == "Embeddings_words"]
print(len(nodes_with_sp)) # should be 1
words_tensor = nodes_with_sp[0].attr.get("value").tensor
word_list = [i.decode('utf-8') for i in words_tensor.string_val]
print(len(word_list)) # should be 400004
If you are just curious about the words I upload them here.
I'm assuming you have tensorflow & tensorflow_hub installed, and youhave already downloaded the model.
IMPORTANT: I'm assuming you're looking at https://tfhub.dev/google/universal-sentence-encoder/4! There's no guarantee the object graph looks the same for different versions, it's likely that modifications will be needed.
Find it's location on disk - it's somewhere at /tmp/tfhub_modules unless you set the TFHUB_CACHE_DIR environment variable (Windows/Mac have different locations). The path should contain a file called saved_model.pb, which is the model, serialized using Protocol Buffers.
Unfortunately, the dictionary is serialized inside the model's Protocol Buffers file and not as an external asset, so we'll have to load the model and get the variable from it.
The strategy is to use tensorflow's code to deserialize the file, and then travel down the serialized object tree all the way to the dictionary.
import importlib
MODEL_PATH = 'path/to/model/dir' # e.g. '/tmp/tfhub_modules/063d866c06683311b44b4992fd46003be952409c/'
# Use the tensorflow internal Protobuf loader. A regular import statement will fail.
loader_impl = importlib.import_module('tensorflow.python.saved_model.loader_impl')
saved_model = loader_impl.parse_saved_model(MODEL_PATH)
# reach into the object graph to get the tensor
graph = saved_model.meta_graphs[0].graph_def
function = graph.library.function
node_type, node_value = function[5].node_def
# if you print(node_type) you'll see it's called "text_preprocessor/hash_table"
# as well as get insight into this branch of the object graph we're looking at
words_tensor = node_value.attr.get("value").tensor
word_list = [i.decode('utf-8') for i in words_tensor.string_val]
print(len(word_list)) # -> 400004
Some resources that helped:
A GitHub issue relating to changing the vocabulary
A Tensorflow Google-group thread linked from the issue
Extra Notes
Despite what the GitHub issue may lead you to think, the 400k words here are not the GloVe 400k vocabulary. You can verify this by downloading the GloVe 6B embeddings (file link), extracting glove.6B.50d.txt, and then using the following code to compare the two dictionaries:
with open('/path/to/glove.6B.50d.txt') as f:
glove_vocabulary = set(line.strip().split(maxsplit=1)[0] for line in f)
USE_vocabulary = set(word_list) # from above
print(len(USE_vocabulary - glove_vocabulary)) # -> 281150
Inspecting the different vocabularies is interesting in and of itself, e.g. why does GloVe have an entry for '287.9'?

Numpy- Deep Learning, Training Examples

Silly Question, I am going through the third week of Andrew Ng's newest Deep learning course, and getting stuck at a fairly simple Numpy function ( i think? ).
The exercise is to find How many training examples, m , we have.
Any idea what the Numpy function is to find out about the size of a preloaded training example.
Thanks!
shape_X = X.shape
shape_Y = Y.shape
m = ?
print ('The shape of X is: ' + str(shape_X))
print ('The shape of Y is: ' + str(shape_Y))
print ('I have m = %d training examples!' % (m))
It depends on what kind of storage-approach you use.
Most python-based tools use the [n_samples, n_features] approach where the first dimension is the sample-dimension, the second dimension is the feature-dimension (like in scikit-learn and co.). Alternatively expressed: samples are rows and features are columns.
So:
# feature 1 2 3 4
x = np.array([[1,2,3,4], # first sample
[2,3,4,5], # second sample
[3,4,5,6]
])
is a training-set of 3 samples with 4 features each.
The sizes M,N (again: interpretation might be different for others) you can get with:
M, N = x.shape
because numpy's first dimension are rows, numpy's second dimension are columns like in matrix-algebra.
For the above example, the target-array is of shape (M) = n_samples.
Anytime you want to find the number of training examples or the size of an array, you can use
m = X.size
This will give you the size or the total number of the examples. In this case, it would be 400.
The above method is also correct but not the optimal method to find the size since, in large datasets, the values could be large and while python easily handles large values, it is not advisable to utilize extra unneeded space.
Or a better way of doing the above scenario is
m=X.shape[1]