I have a checkpoint which is trained with 11 classes. I added one class to my dataset and trying to restore it in order to retain the CNN but it gave me an error related to shape because the previous one was trained with 11 classes and actually have 12 classes, did i saved the weights and biases variable in a right way ? what should I do ? here is the code:
batch_size = 10
num_hidden = 64
num_channels = 1
depth = 32
....
graph = tf.Graph()
with graph.as_default():
# Input data.
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, IMAGE_SIZE_H, IMAGE_SIZE_W, num_channels))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
w_b = {
'weight_0': tf.Variable(tf.random_normal([patch_size_1, patch_size_1, num_channels, depth],stddev=0.1)),
'weight_1': tf.Variable(tf.random_normal([patch_size_2, patch_size_2, depth, depth], stddev=0.1)),
'weight_2': tf.Variable(tf.random_normal([patch_size_3, patch_size_3, depth, depth], stddev=0.1)),
'weight_3': tf.Variable(tf.random_normal([IMAGE_SIZE_H // 32 * IMAGE_SIZE_W // 32 * depth, num_hidden], stddev=0.1)),
'weight_4': tf.Variable(tf.random_normal([num_hidden, num_labels], stddev=0.1)),
'bias_0' : tf.Variable(tf.zeros([depth])),
'bias_1' : tf.Variable(tf.constant(1.0, shape=[depth])),
'bias_2' : tf.Variable(tf.constant(1.0, shape=[depth])),
'bias_3' : tf.Variable(tf.constant(1.0, shape=[num_hidden])),
'bias_4' : tf.Variable(tf.constant(1.0, shape=[num_labels]))
}
# Model.
def model(data):
conv_1 = tf.nn.conv2d(data, w_b['weight_0'] , [1, 2, 2, 1], padding='SAME')
hidden_1 = tf.nn.relu(conv_1 + w_b['bias_0'])
pool_1 = tf.nn.max_pool(hidden_1,ksize = [1,5,5,1], strides= [1,2,2,1],padding ='SAME' )
conv_2 = tf.nn.conv2d(pool_1, w_b['weight_1'], [1, 2, 2, 1], padding='SAME')
hidden_2 = tf.nn.relu(conv_2 + w_b['bias_1'])
conv_3 = tf.nn.conv2d(hidden_2, w_b['weight_2'], [1, 2, 2, 1], padding='SAME')
hidden_3 = tf.nn.relu(conv_3 + w_b['bias_2'])
pool_2 = tf.nn.max_pool(hidden_3,ksize = [1,3,3,1], strides= [1,2,2,1],padding ='SAME' )
shape = pool_2.get_shape().as_list()
reshape = tf.reshape(pool_2, [shape[0], shape[1] * shape[2] * shape[3]])
hidden_4 = tf.nn.relu(tf.matmul(reshape, w_b['weight_3']) + w_b['bias_3'])
return tf.matmul(hidden_4, w_b['weight_4']) + w_b['bias_4']
# Training computation.
logits = model(tf_train_dataset)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
test_prediction = tf.nn.softmax(model(tf_test_dataset))
init = tf.initialize_all_variables()
w_b_saver = tf.train.Saver(var_list = w_b)
num_steps = 1001
with tf.Session(graph=graph) as sess:
ckpt = ("/home/..../w_b_models.ckpt")
if os.path.isfile(ckpt) :
w_b_saver.restore(sess,ckpt)
print("restore complete")
print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval() , test_labels))
else:
print("Error while loading model checkpoint.")
print('Initialized')
sess.run(init)
for step in range(num_steps):
.....
accuracy(test_prediction.eval(),test_labels, force = False ))
save_path_w_b = w_b_saver.save(sess, "/home/...../w_b_models.ckpt")
print("Model saved in file: %s" % save_path_w_b)
and here is the error :
InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape= [64,12] rhs shape= [64,11]
[[Node: save/Assign_9 = Assign[T=DT_FLOAT, _class=["loc:#Variable_4"], use_locking=true, validate_shape=true, _device="/job:localhost/replica:0/task:0/gpu:0"](Variable_4, save/restore_slice_9/_12)]]
I believe the problem is you need to remove this one from w_b then save it then restore it as you're doing.
Remove this:
'weight_4': tf.Variable(tf.random_normal([num_hidden, num_labels], stddev=0.1)),
Then it should work. Main reason is that you're changing number of labels and expecting it to restore to this same variable. As a side note it's better to use tf.get_variable instead of tf.Variable.
Updated answer:
make a new variable called
w_b_to_save = {
'weight_0': tf.Variable(tf.random_normal([patch_size_1, patch_size_1, num_channels, depth],stddev=0.1)),
'weight_1': tf.Variable(tf.random_normal([patch_size_2, patch_size_2, depth, depth], stddev=0.1)),
'weight_2': tf.Variable(tf.random_normal([patch_size_3, patch_size_3, depth, depth], stddev=0.1)),
'weight_3': tf.Variable(tf.random_normal([IMAGE_SIZE_H // 32 * IMAGE_SIZE_W // 32 * depth, num_hidden], stddev=0.1)),
'bias_0' : tf.Variable(tf.zeros([depth])),
'bias_1' : tf.Variable(tf.constant(1.0, shape=[depth])),
'bias_2' : tf.Variable(tf.constant(1.0, shape=[depth])),
'bias_3' : tf.Variable(tf.constant(1.0, shape=[num_hidden])),
}
...
w_b_saver = tf.train.Saver(var_list = w_b_to_save)
now you'll be able to save just the ones you want. This is a bit excessive to create a new variable that's basically the same as the last one but it's to show the point that you can't both save the last layer, and restore it while changing it.
Related
My tensorflow version is 1.3.0 .
My python version is 3.5.
I implement CNN followed by bid-LSTM. and I run code on CPU.
After implementing CNN, pool2's shape will be [batch_size(None), None, 106, 64]. Then tf.reshape(pool2, [-1, tf.shape(pool2)[1], tf.shape(pool2)[2]xtf.shape(pool2)[3]]) . I hope tf.reshape can reshape 4D into 3D on pool2. And then feed it bid-LSTM, but tf.nn.bidirectional_dynamic_rnn happen wrong.
It says "Input size (depth of inputs) must be accessible via shape inference," ValueError: Input size (depth of inputs) must be accessible via shape inference, but saw value None.
I haven't found the solution to the problem for a long time. Maybe I use wrong keyword to search on Internet. Or give some right keyword to me.
x = tf.placeholder('float', shape=[None, None, 108])
y = tf.placeholder('float')
n_steps = tf.placeholder('int64')
def CNN(x):
input_layer = tf.reshape(x, [-1, tf.shape(x)[1], 108, 1])
conv1 = tf.layers.conv2d(inputs=input_layer, filters=32, kernel_size=[5, 3], padding="same", activation=tf.nn.relu)
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=1)
conv2 = tf.layers.conv2d(inputs=conv1, filters=64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=1)
output = tf.reshape(pool2, [-1, tf.shape(pool2)[1], tf.shape(pool2)[2]*tf.shape(pool2)[3]])
return output
def recurrent_neural_network(x):
layer1 = {'weights':tf.Variable(tf.random_normal([rnn_size*2,n_classes])),'biases':tf.Variable(tf.random_normal([n_classes]))}
lstm_fw_cell = tf.nn.rnn_cell.BasicLSTMCell(rnn_size,state_is_tuple=True)
lstm_bw_cell = tf.nn.rnn_cell.BasicLSTMCell(rnn_size,state_is_tuple=True)
outputs, states = tf.nn.bidirectional_dynamic_rnn(cell_fw=lstm_fw_cell, cell_bw=lstm_bw_cell, inputs=x, dtype=tf.float32) #[batch_size, max_time, cell_output_size]
outputs = tf.concat(outputs, 2)
max_length = tf.shape(outputs)[1]
outputs = tf.reshape(outputs, [-1, rnn_size*2])
prediction = tf.matmul(outputs,layer1['weights']) + layer1['biases']
prediction = tf.reshape(prediction, [-1, max_length, n_classes])
return prediction
def train_neural_network(x):
CNN_result = CNN(x)
prediction = recurrent_neural_network(CNN_result)
tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y)
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y) )
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
i=0
while i < len(train_X):
start = i
end = i+batch_size
batch_x = train_X[start:end]
batch_y = train_Y[start:end]
batch_sen_len = train_sen_len[start:end]
max_batch_sen_len = max(batch_sen_len)
#padding zero
for j in range(len(batch_x)):
k = max_batch_sen_len - len(batch_x[j])
for _ in range(k):
batch_x[j].append([0]*108)
batch_y[j].append([0]*48)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y, n_steps: batch_sen_len})
epoch_loss += c
i+=batch_size
print('Epoch', epoch+1, 'completed out of',hm_epochs,'loss:',epoch_loss)
I am building a binary classifier with my own image pipeline. The images are 178x65 (wxh) greyscale jpgs. It loads the images and their labels correctly, and fits all of the layer sizes correctly, but for some reason, it always outputs the same prediction for every image ([ 1. 0.]). Can anyone point me in the right direction?
# Example on how to use the tensorflow input pipelines. The explanation can be found here ischlag.github.io.
import tensorflow as tf
import random
from tensorflow.python.framework import ops
from tensorflow.python.framework import dtypes
dataset_path = "./v5-tensorflow/"
test_labels_file = "test-labels.csv"
train_labels_file = "train-labels.csv"
test_set_size = 39
IMAGE_HEIGHT = 65
IMAGE_WIDTH = 178
NUM_CHANNELS = 1
BATCH_SIZE = 39
def encode_label(label):
if label == "kalli\n":
return [0, 1]
elif label == "francisco\n":
return [1, 0]
else:
print("SOMETHING WENT WRONG")
return [0, 0]
def read_label_file(file):
f = open(file, "r")
filepaths = []
labels = []
for line in f:
filepath, label = line.split(",")
filepaths.append(filepath)
labels.append(encode_label(label))
return filepaths, labels
# reading labels and file path
train_filepaths, train_labels = read_label_file(dataset_path + train_labels_file)
test_filepaths, test_labels = read_label_file(dataset_path + test_labels_file)
# transform relative path into full path
train_filepaths = [ dataset_path + fp for fp in train_filepaths]
test_filepaths = [ dataset_path + fp for fp in test_filepaths]
# convert string into tensors
train_images = ops.convert_to_tensor(train_filepaths, dtype=dtypes.string)
test_images = ops.convert_to_tensor(test_filepaths, dtype=dtypes.string)
train_labels = ops.convert_to_tensor(train_labels, dtype=dtypes.int32)
test_labels = ops.convert_to_tensor(test_labels, dtype=dtypes.int32)
# create input queues
train_input_queue = tf.train.slice_input_producer(
[train_images, train_labels],
shuffle=True)
test_input_queue = tf.train.slice_input_producer(
[test_images, test_labels],
shuffle=True)
# process path and string tensor into an image and a label
file_content = tf.read_file(train_input_queue[0])
train_image = tf.image.decode_jpeg(file_content, channels=NUM_CHANNELS)
train_label = train_input_queue[1]
file_content = tf.read_file(test_input_queue[0])
test_image = tf.image.decode_jpeg(file_content, channels=NUM_CHANNELS)
test_label = test_input_queue[1]
# define tensor shape
train_image.set_shape([IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNELS])
test_image.set_shape([IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNELS])
# collect batches of images before processing
# train_image_batch, train_label_batch
train_batch = tf.train.batch(
[train_image, train_label],
batch_size=BATCH_SIZE
#,num_threads=1
)
# test_image_batch, test_label_batch
test_batch = tf.train.batch(
[test_image, test_label],
batch_size=BATCH_SIZE
#,num_threads=1
)
x = tf.placeholder(tf.float32, shape=[None, 65, 178, 1], name="x")
y_ = tf.placeholder(tf.float32, shape=[None, 2], name="y_")
#
def weight_variable(shape, n):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name=n)
def bias_variable(shape, n):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name=n)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
#
input_reshape = tf.reshape(x, [-1,65,178,1])
W_conv1 = weight_variable([5, 5, 1, 32], "w1")
b_conv1 = bias_variable([32], "b1")
h_conv1 = tf.nn.relu(conv2d(input_reshape, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) # 33x89x32
#
W_conv2 = weight_variable([5, 5, 32, 64], "w2")
b_conv2 = bias_variable([64], "b2")
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) # now 17x45x64
W_conv3 = weight_variable([5, 5, 64, 128], "w3")
b_conv3 = bias_variable([128], "b3")
h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3) + b_conv3)
h_pool3 = max_pool_2x2(h_conv3)# 9x23x128
W_conv4 = weight_variable([5, 5, 128, 256], "w4")
b_conv4 = bias_variable([256], "b4")
h_conv4 = tf.nn.relu(conv2d(h_pool3, W_conv4) + b_conv4)
h_pool4 = max_pool_2x2(h_conv4) # 5x12x256
W_fc1 = weight_variable([5 * 12 * 256, 5120], "w5")
b_fc1 = bias_variable([5120], "b5")
h_pool4_flat = tf.reshape(h_pool4, [-1, 5*12*256])
h_fc1 = tf.nn.relu(tf.matmul(h_pool4_flat, W_fc1) + b_fc1) # 1x5120
W_fc2 = weight_variable([5120, 2], "w6")
b_fc2 = bias_variable([2], "b6") # 1x2
y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2, name="softmax")
y_clipped = tf.clip_by_value(y_conv, 1e-10, 0.9999999)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_clipped), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_clipped, 1), tf.argmax(y_, 1), name="correct")
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name="accuracy")
saver = tf.train.Saver()
print("input pipeline ready")
with tf.Session() as sess:
# initialize the variables
sess.run(tf.global_variables_initializer())
# initialize the queue threads to start to shovel data
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
print("from the train set:")
for i in range(62):
batch = sess.run(train_batch)
if i % 3 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1]
})
print("step %d, training accuracy %.2f" % (i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1]})
saver.save(sess, "model.ckpt")
tf.train.write_graph(sess.graph_def, '', 'graph.pb')
t_batch = sess.run(test_batch)
print("test accuracy %g" % accuracy.eval(feed_dict={
x: t_batch[0], y_: t_batch[1]
}))
# stop our queue threads and properly close the session
coord.request_stop()
coord.join(threads)
sess.close()
Iam new to Tensorflow. I am trying to build a convnet with the below model. I am getting a NotImplementedError. The code looks fine, not sure what I am missing. Error is in line -> hidden2 = tf.nn.relu(conv2,layer2_biases)
with graph.as_default():
tf_train_dataset = tf.placeholder(
tf.float32, shape=(128, 24, 24, 3))
tf_train_labels = tf.placeholder(tf.float32, shape=(128, 10))
layer1_weights = tf.Variable(tf.truncated_normal([5,5,3,64],stddev=0.1))
layer1_biases = tf.Variable(tf.zeros([64]))
layer2_weights = tf.Variable(tf.truncated_normal([5,5,64,64],stddev=0.1))
layer2_biases = tf.Variable(tf.constant(1.0, shape=[64]))
layer3_weights = tf.Variable(tf.truncated_normal([6 * 6 * 64 ,384],stddev=0.1))
layer3_biases = tf.Variable(tf.constant(1.0, shape=[384]))
layer4_weights = tf.Variable(tf.truncated_normal([384,192],stddev=0.1))
layer4_biases = tf.Variable(tf.constant(1.0, shape=[192]))
layer5_weights = tf.Variable(tf.truncated_normal([192,10],stddev=0.1))
layer5_biases = tf.Variable(tf.constant(1.0, shape=[64]))
def model(data):
conv1 = tf.nn.conv2d(data,layer1_weights,[1,1,1,1],padding='SAME')
hidden1 = tf.nn.relu(conv1 + layer1_biases)
hidden1 = tf.nn.max_pool(hidden1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding='SAME', name='pool1')
conv2 = tf.nn.conv2d(hidden1,layer2_weights,[1,1,1,1],padding='SAME')
hidden2 = tf.nn.relu(conv2,layer2_biases)
hidden2 = tf.nn.max_pool(hidden2,ksize=[1,3,3,1],strides=[1,2,2,1],padding='SAME',name='pool2')
shape = hidden2.get_shape().as_list()
hidden2 = tf.reshape(hidden2, [shape[0], shape[1] * shape[2] * shape[3]])
hidden3 = tf.nn.relu(tf.matmul(hidden2, layer3_weights) + layer3_biases)
hidden4 = tf.nn.relu(tf.matmul(hidden3, layer4_weights) + layer4_biases)
return tf.matmul(hidden4,layer5_weights) + layer5_biases
logits = model(tf_train_dataset)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits,tf_train_labels))
optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
train_prediction = tf.nn.softmax(logits)
tf.relu takes two arguments: features Tensor and name string and you send two tensors. It should be:
conv2 = tf.nn.bias_add(conv2, layer2_biases)
hidden2 = tf.nn.relu(conv2)
tf.bias_add is just a special case of tf.add.
I have created a model using the following code below:
# Deep Learning
# In[25]:
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
# In[37]:
pickle_file = 'notMNIST.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset']
valid_labels = save['valid_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
del save # hint to help gc free up memory
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
print(test_labels)
# Reformat into a TensorFlow-friendly shape:
# - convolutions need the image data formatted as a cube (width by height by #channels)
# - labels as float 1-hot encodings.
# In[38]:
image_size = 28
num_labels = 10
num_channels = 1 # grayscale
import numpy as np
def reformat(dataset, labels):
dataset = dataset.reshape(
(-1, image_size, image_size, num_channels)).astype(np.float32)
#print(np.arange(num_labels))
labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
#print(labels[0,:])
print(labels[0])
return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
#print(labels[0])
# In[39]:
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
# Let's build a small network with two convolutional layers, followed by one fully connected layer. Convolutional networks are more expensive computationally, so we'll limit its depth and number of fully connected nodes.
# In[47]:
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
# Input data.
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, image_size, image_size, num_channels))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
layer1_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights")
layer1_biases = tf.Variable(tf.zeros([depth]),name = "layer1_biases")
layer2_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, depth, depth], stddev=0.1),name = "layer2_weights")
layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]),name ="layer2_biases")
layer3_weights = tf.Variable(tf.truncated_normal(
[image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1),name="layer3_biases")
layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]),name = "layer3_biases")
layer4_weights = tf.Variable(tf.truncated_normal(
[num_hidden, num_labels], stddev=0.1),name = "layer4_weights")
layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]),name = "layer4_biases")
# Model.
def model(data):
conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer1_biases)
conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer2_biases)
shape = hidden.get_shape().as_list()
reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
return tf.matmul(hidden, layer4_weights) + layer4_biases
# Training computation.
logits = model(tf_train_dataset)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
test_prediction = tf.nn.softmax(model(tf_test_dataset))
# In[48]:
num_steps = 1001
#saver = tf.train.Saver()
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print('Initialized')
for step in range(num_steps):
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
batch_labels = train_labels[offset:(offset + batch_size), :]
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 50 == 0):
print('Minibatch loss at step %d: %f' % (step, l))
print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
print('Validation accuracy: %.1f%%' % accuracy(
valid_prediction.eval(), valid_labels))
print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
save_path = tf.train.Saver().save(session, "/tmp/model.ckpt")
print("Model saved in file: %s" % save_path)
I have saved the model and wrote another python program where i am trying to restore the model and use it for classification of my images , but i am not being able to create a 4D tensor of the image , that i have to pass as input to the model.
The code of the python file is as follows :
# In[8]:
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
from scipy import ndimage
# In[9]:
image_size = 28
num_labels = 10
num_channels = 1 # grayscale
import numpy as np
# In[10]:
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
# In[15]:
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64
pixel_depth =255
graph = tf.Graph()
with graph.as_default():
'''# Input data.
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, image_size, image_size, num_channels))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
#tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)'''
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, image_size, image_size, num_channels))
# Variables.
layer1_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights")
layer1_biases = tf.Variable(tf.zeros([depth]),name = "layer1_biases")
layer2_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, depth, depth], stddev=0.1),name = "layer2_weights")
layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]),name ="layer2_biases")
layer3_weights = tf.Variable(tf.truncated_normal(
[image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1),name="layer3_biases")
layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]),name = "layer3_biases")
layer4_weights = tf.Variable(tf.truncated_normal(
[num_hidden, num_labels], stddev=0.1),name = "layer4_weights")
layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]),name = "layer4_biases")
saver = tf.train.Saver()
tf_
# Model.
def model(data):
conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer1_biases)
conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer2_biases)
shape = hidden.get_shape().as_list()
reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
return tf.matmul(hidden, layer4_weights) + layer4_biases
valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
#test_prediction = tf.nn.softmax(model(tf_test_dataset))
# In[19]:
with tf.Session(graph=graph) as sess:
# Restore variables from disk.
saver.restore(sess, "/tmp/model.ckpt")
print("Model restored.")
image_data = (ndimage.imread('notMNIST_small/A/QXJyaWJhQXJyaWJhU3RkLm90Zg==.png').astype(float) -
pixel_depth / 2) / pixel_depth
data = [0:,image_data:,]
sess.run(valid_prediction,feed_dict={tf_valid_dataset:data})
# Do some work with the model
As you can see in ln[19] i have restored my model and want to pass an image to the model by creating a 4d Tensor , I am reading the image and then trying to convert it to a 4d tensor but the ysntax for creating it is wrong in my code , thus need help in correcting it .
Assuming that image_data is a grayscale image, it should be a 2-D NumPy array. You can convert it to a 4-D array with the following:
data = image_data[np.newaxis, ..., np.newaxis]
The np.newaxis adds a new dimension of size 1 in the first (batch size) and last (channels) dimensions. It is equivalent to the following, using np.expand_dims():
data = np.expand_dims(np.expand_dims(image_data, 0), -1)
On the other hand, if you are working with RGB data, you will need to convert it to fit the model. You could for example define a placeholder for the image input:
input_placeholder = tf.placeholder(tf.float32, shape=[None, image_size, image_size, 3])
input_grayscale = tf.image.rgb_to_grayscale(input_placeholder)
prediction = tf.nn.softmax(model(input_grayscale))
image_data = ... # Load from file
data = image_data[np.newaxis, ...] # Only add a batch dimension.
prediction_val = sess.run(prediction, feed_dict={input_placeholder: data})
I am trying to save the model and then reuse it for classifying my images but unfortunately i am getting errors in restoring the model that i have saved.
The code in which model has been created :
# Deep Learning
# =============
#
# Assignment 4
# ------------
# In[25]:
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
# In[37]:
pickle_file = 'notMNIST.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset']
valid_labels = save['valid_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
del save # hint to help gc free up memory
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
print(test_labels)
# Reformat into a TensorFlow-friendly shape:
# - convolutions need the image data formatted as a cube (width by height by #channels)
# - labels as float 1-hot encodings.
# In[38]:
image_size = 28
num_labels = 10
num_channels = 1 # grayscale
import numpy as np
def reformat(dataset, labels):
dataset = dataset.reshape(
(-1, image_size, image_size, num_channels)).astype(np.float32)
#print(np.arange(num_labels))
labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
#print(labels[0,:])
print(labels[0])
return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
#print(labels[0])
# In[39]:
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
# Let's build a small network with two convolutional layers, followed by one fully connected layer. Convolutional networks are more expensive computationally, so we'll limit its depth and number of fully connected nodes.
# In[47]:
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
# Input data.
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, image_size, image_size, num_channels))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
layer1_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights")
layer1_biases = tf.Variable(tf.zeros([depth]),name = "layer1_biases")
layer2_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, depth, depth], stddev=0.1),name = "layer2_weights")
layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]),name ="layer2_biases")
layer3_weights = tf.Variable(tf.truncated_normal(
[image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1),name="layer3_biases")
layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]),name = "layer3_biases")
layer4_weights = tf.Variable(tf.truncated_normal(
[num_hidden, num_labels], stddev=0.1),name = "layer4_weights")
layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]),name = "layer4_biases")
# Model.
def model(data):
conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer1_biases)
conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer2_biases)
shape = hidden.get_shape().as_list()
reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
return tf.matmul(hidden, layer4_weights) + layer4_biases
# Training computation.
logits = model(tf_train_dataset)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
test_prediction = tf.nn.softmax(model(tf_test_dataset))
# In[48]:
num_steps = 1001
#saver = tf.train.Saver()
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print('Initialized')
for step in range(num_steps):
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
batch_labels = train_labels[offset:(offset + batch_size), :]
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 50 == 0):
print('Minibatch loss at step %d: %f' % (step, l))
print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
print('Validation accuracy: %.1f%%' % accuracy(
valid_prediction.eval(), valid_labels))
print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
save_path = tf.train.Saver().save(session, "/tmp/model.ckpt")
print("Model saved in file: %s" % save_path)
Everything works fine and the model is stored in the respective folder .
I have created one more python file where i have tried restoring the model but getting an error there
# In[1]:
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
# In[3]:
image_size = 28
num_labels = 10
num_channels = 1 # grayscale
import numpy as np
# In[4]:
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
# In[8]:
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
'''# Input data.
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, image_size, image_size, num_channels))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)'''
# Variables.
layer1_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights")
layer1_biases = tf.Variable(tf.zeros([depth]),name = "layer1_biases")
layer2_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, depth, depth], stddev=0.1),name = "layer2_weights")
layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]),name ="layer2_biases")
layer3_weights = tf.Variable(tf.truncated_normal(
[image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1),name="layer3_biases")
layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]),name = "layer3_biases")
layer4_weights = tf.Variable(tf.truncated_normal(
[num_hidden, num_labels], stddev=0.1),name = "layer4_weights")
layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]),name = "layer4_biases")
# Model.
def model(data):
conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer1_biases)
conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer2_biases)
shape = hidden.get_shape().as_list()
reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
return tf.matmul(hidden, layer4_weights) + layer4_biases
'''# Training computation.
logits = model(tf_train_dataset)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)'''
# Predictions for the training, validation, and test data.
#train_prediction = tf.nn.softmax(logits)
#valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
#test_prediction = tf.nn.softmax(model(tf_test_dataset))
# In[17]:
#saver = tf.train.Saver()
with tf.Session() as sess:
# Restore variables from disk.
tf.train.Saver().restore(sess, "/tmp/model.ckpt")
print("Model restored.")
# Do some work with the model
error that i am getting is :
No variables to save
Any help would be appreciated
The error here is quite subtle. In In[8] you create a tf.Graph called graph and set it as default for the with graph.as_default(): block. This means that all of the variables are created in graph, and if you print graph.all_variables() you should see a list of your variables.
However, you exit the with block before creating (i) the tf.Session, and (ii) the tf.train.Saver. This means that the session and saver are created in a different graph (the global default tf.Graph that is used when you don't explicitly create one and set it as default), which doesn't contain any variables—or any nodes at all.
There are at least two solutions:
As Yaroslav suggests, you can write your program without using the with graph.as_default(): block, which avoids the confusion with multiple graphs. However, this can lead to name collisions between different cells in your IPython notebook, which is awkward when using the tf.train.Saver, since it uses the name property of a tf.Variable as the key in the checkpoint file.
You can create the saver inside the with graph.as_default(): block, and create the tf.Session with an explicit graph, as follows:
with graph.as_default():
# [Variable and model creation goes here.]
saver = tf.train.Saver() # Gets all variables in `graph`.
with tf.Session(graph=graph) as sess:
saver.restore(sess)
# Do some work with the model....
Alternatively, you can create the tf.Session inside the with graph.as_default(): block, in which case it will use graph for all of its operations.
You are creating a new session in In[17] which wipes your variables. Also, you don't need to use with blocks if you only have one default graph and one default session, you can instead do something like this
sess = tf.InteractiveSession()
layer1_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights")
tf.train.Saver().restore(sess, "/tmp/model.ckpt")