I am trying to save the model and then reuse it for classifying my images but unfortunately i am getting errors in restoring the model that i have saved.
The code in which model has been created :
# Deep Learning
# =============
#
# Assignment 4
# ------------
# In[25]:
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
# In[37]:
pickle_file = 'notMNIST.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset']
valid_labels = save['valid_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
del save # hint to help gc free up memory
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
print(test_labels)
# Reformat into a TensorFlow-friendly shape:
# - convolutions need the image data formatted as a cube (width by height by #channels)
# - labels as float 1-hot encodings.
# In[38]:
image_size = 28
num_labels = 10
num_channels = 1 # grayscale
import numpy as np
def reformat(dataset, labels):
dataset = dataset.reshape(
(-1, image_size, image_size, num_channels)).astype(np.float32)
#print(np.arange(num_labels))
labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
#print(labels[0,:])
print(labels[0])
return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
#print(labels[0])
# In[39]:
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
# Let's build a small network with two convolutional layers, followed by one fully connected layer. Convolutional networks are more expensive computationally, so we'll limit its depth and number of fully connected nodes.
# In[47]:
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
# Input data.
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, image_size, image_size, num_channels))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
layer1_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights")
layer1_biases = tf.Variable(tf.zeros([depth]),name = "layer1_biases")
layer2_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, depth, depth], stddev=0.1),name = "layer2_weights")
layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]),name ="layer2_biases")
layer3_weights = tf.Variable(tf.truncated_normal(
[image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1),name="layer3_biases")
layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]),name = "layer3_biases")
layer4_weights = tf.Variable(tf.truncated_normal(
[num_hidden, num_labels], stddev=0.1),name = "layer4_weights")
layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]),name = "layer4_biases")
# Model.
def model(data):
conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer1_biases)
conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer2_biases)
shape = hidden.get_shape().as_list()
reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
return tf.matmul(hidden, layer4_weights) + layer4_biases
# Training computation.
logits = model(tf_train_dataset)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
test_prediction = tf.nn.softmax(model(tf_test_dataset))
# In[48]:
num_steps = 1001
#saver = tf.train.Saver()
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print('Initialized')
for step in range(num_steps):
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
batch_labels = train_labels[offset:(offset + batch_size), :]
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 50 == 0):
print('Minibatch loss at step %d: %f' % (step, l))
print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
print('Validation accuracy: %.1f%%' % accuracy(
valid_prediction.eval(), valid_labels))
print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
save_path = tf.train.Saver().save(session, "/tmp/model.ckpt")
print("Model saved in file: %s" % save_path)
Everything works fine and the model is stored in the respective folder .
I have created one more python file where i have tried restoring the model but getting an error there
# In[1]:
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
# In[3]:
image_size = 28
num_labels = 10
num_channels = 1 # grayscale
import numpy as np
# In[4]:
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
# In[8]:
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
'''# Input data.
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, image_size, image_size, num_channels))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)'''
# Variables.
layer1_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights")
layer1_biases = tf.Variable(tf.zeros([depth]),name = "layer1_biases")
layer2_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, depth, depth], stddev=0.1),name = "layer2_weights")
layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]),name ="layer2_biases")
layer3_weights = tf.Variable(tf.truncated_normal(
[image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1),name="layer3_biases")
layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]),name = "layer3_biases")
layer4_weights = tf.Variable(tf.truncated_normal(
[num_hidden, num_labels], stddev=0.1),name = "layer4_weights")
layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]),name = "layer4_biases")
# Model.
def model(data):
conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer1_biases)
conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer2_biases)
shape = hidden.get_shape().as_list()
reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
return tf.matmul(hidden, layer4_weights) + layer4_biases
'''# Training computation.
logits = model(tf_train_dataset)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)'''
# Predictions for the training, validation, and test data.
#train_prediction = tf.nn.softmax(logits)
#valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
#test_prediction = tf.nn.softmax(model(tf_test_dataset))
# In[17]:
#saver = tf.train.Saver()
with tf.Session() as sess:
# Restore variables from disk.
tf.train.Saver().restore(sess, "/tmp/model.ckpt")
print("Model restored.")
# Do some work with the model
error that i am getting is :
No variables to save
Any help would be appreciated
The error here is quite subtle. In In[8] you create a tf.Graph called graph and set it as default for the with graph.as_default(): block. This means that all of the variables are created in graph, and if you print graph.all_variables() you should see a list of your variables.
However, you exit the with block before creating (i) the tf.Session, and (ii) the tf.train.Saver. This means that the session and saver are created in a different graph (the global default tf.Graph that is used when you don't explicitly create one and set it as default), which doesn't contain any variables—or any nodes at all.
There are at least two solutions:
As Yaroslav suggests, you can write your program without using the with graph.as_default(): block, which avoids the confusion with multiple graphs. However, this can lead to name collisions between different cells in your IPython notebook, which is awkward when using the tf.train.Saver, since it uses the name property of a tf.Variable as the key in the checkpoint file.
You can create the saver inside the with graph.as_default(): block, and create the tf.Session with an explicit graph, as follows:
with graph.as_default():
# [Variable and model creation goes here.]
saver = tf.train.Saver() # Gets all variables in `graph`.
with tf.Session(graph=graph) as sess:
saver.restore(sess)
# Do some work with the model....
Alternatively, you can create the tf.Session inside the with graph.as_default(): block, in which case it will use graph for all of its operations.
You are creating a new session in In[17] which wipes your variables. Also, you don't need to use with blocks if you only have one default graph and one default session, you can instead do something like this
sess = tf.InteractiveSession()
layer1_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights")
tf.train.Saver().restore(sess, "/tmp/model.ckpt")
Related
I tried to write a good structured Neural network model with Tensorflow. But I met a problem about feed the data from tfrecord into the graph. The code is as below, it hangs on at the following function, how can I make it work?
images, labels = network.load_tfrecord_data(1)
this function can not get the features (images) and labels from my datafile, .tfrecords?
Any idea will be appreciated?
from __future__ import division
from __future__ import print_function
import datetime
import numpy as np
import tensorflow as tf
layers = tf.contrib.layers
losses = tf.contrib.losses
metrics = tf.contrib.metrics
LABELS = 10
WIDTH = 28
HEIGHT = 28
HIDDEN = 100
def read_and_decode_single_example(filename):
filename_queue = tf.train.string_input_producer([filename], num_epochs=None)
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'label': tf.FixedLenFeature([], tf.int64),
'image': tf.FixedLenFeature([50176], tf.int64)
})
label = features['label']
image = features['image']
image = tf.reshape(image, [-1, 224, 224, 1])
label = tf.one_hot(label - 1, 11, dtype=tf.int64)
return label, image
class Network:
def __init__(self, logdir, experiment, threads):
# Construct the graph
with tf.name_scope("inputs"):
self.images = tf.placeholder(tf.float32, [None, WIDTH, HEIGHT, 1], name="images")
self.labels = tf.placeholder(tf.int64, [None], name="labels")
# self.keep_prob = keep_prob
self.keep_prob = tf.placeholder(tf.float32, name="keep_prob")
flattened_images = layers.flatten(self.images)
hidden_layer = layers.fully_connected(flattened_images, num_outputs=HIDDEN, activation_fn=tf.nn.relu, scope="hidden_layer")
output_layer = layers.fully_connected(hidden_layer, num_outputs=LABELS, activation_fn=None, scope="output_layer")
loss = losses.sparse_softmax_cross_entropy(labels=self.labels, logits=output_layer, scope="loss")
self.training = layers.optimize_loss(loss, None, None, tf.train.AdamOptimizer(), summaries=['loss', 'gradients', 'gradient_norm'], name='training')
with tf.name_scope("accuracy"):
predictions = tf.argmax(output_layer, 1, name="predictions")
accuracy = metrics.accuracy(predictions, self.labels)
tf.summary.scalar("training/accuracy", accuracy)
self.accuracy = metrics.accuracy(predictions, self.labels)
with tf.name_scope("confusion_matrix"):
confusion_matrix = metrics.confusion_matrix(predictions, self.labels, weights=tf.not_equal(predictions, self.labels), dtype=tf.float32)
confusion_image = tf.reshape(confusion_matrix, [1, LABELS, LABELS, 1])
# Summaries
self.summaries = {'training': tf.summary.merge_all() }
for dataset in ["dev", "test"]:
self.summaries[dataset] = tf.summary.scalar(dataset + "/loss", loss)
self.summaries[dataset] = tf.summary.scalar(dataset + "/accuracy", accuracy)
self.summaries[dataset] = tf.summary.image(dataset + "/confusion_matrix", confusion_image)
# Create the session
self.session = tf.Session(config=tf.ConfigProto(inter_op_parallelism_threads=threads,
intra_op_parallelism_threads=threads))
self.session.run(tf.global_variables_initializer())
timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H%M%S")
self.summary_writer = tf.summary.FileWriter("{}/{}-{}".format(logdir, timestamp, experiment), graph=self.session.graph, flush_secs=10)
self.steps = 0
def train(self, images, labels, keep_prob):
self.steps += 1
feed_dict = {self.images: self.session.run(images), self.labels: self.session.run(labels), self.keep_prob: keep_prob}
if self.steps == 1:
metadata = tf.RunMetadata()
self.session.run(self.training, feed_dict, options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE), run_metadata=metadata)
self.summary_writer.add_run_metadata(metadata, 'step1')
elif self.steps % 100 == 0:
_, summary = self.session.run([self.training, self.summaries['training']], feed_dict)
self.summary_writer.add_summary(summary, self.steps)
else:
self.session.run(self.training, feed_dict)
def evaluate(self, dataset, images, labels):
feed_dict ={self.images: images, self.labels: labels, self.keep_prob: 1}
summary = self.summaries[dataset].eval({self.images: images, self.labels: labels, self.keep_prob: 1}, self.session)
self.summary_writer.add_summary(summary, self.steps)
def load_tfrecord_data(self, training):
training = training
if training:
label, image = read_and_decode_single_example("mhad_Op_train.tfrecords")
# print(self.session.run(image))
else:
label, image = read_and_decode_single_example("mhad_Op_test.tfrecords")
# image = tf.cast(image, tf.float32) / 255.
images_batch, labels_batch = tf.train.shuffle_batch(
[image, label], batch_size=50, num_threads=2,
capacity=80,
min_after_dequeue=30)
return images_batch, labels_batch
if __name__ == '__main__':
# Fix random seed
np.random.seed(42)
tf.set_random_seed(42)
# Parse arguments
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=256, type=int, help='Batch size.')
parser.add_argument('--epochs', default=50, type=int, help='Number of epochs.')
parser.add_argument('--logdir', default="logs", type=str, help='Logdir name.')
parser.add_argument('--exp', default="mnist-final-confusion_matrix_customized_loss", type=str, help='Experiment name.')
parser.add_argument('--threads', default=1, type=int, help='Maximum number of threads to use.')
args = parser.parse_args()
# Load the data
keep_prob = 1
# Construct the network
network = Network(logdir=args.logdir, experiment=args.exp, threads=args.threads)
# Train
for i in range(args.epochs):
images, labels = network.load_tfrecord_data(1)
network.train(images, labels, keep_prob)
print('current epoch', i)
You need to start the queue before using images, labels in your model.
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
images, labels = network.load_tfrecord_data(1)
...
coord.request_stop()
coord.join(threads)
Check this tutorial for a full example
i get Tensor Tensor("Placeholder:0", shape=(128, 784), dtype=float32) is not an element of this graph. when i want to train & test my graph. The stack-trace is not really helpful, I can't get more information out of it. I really don't understand how this error happens, every data set should be automatically added to graphFully through with graphFully.as_default():and I later call it with with tf.Session(graph=graph) as session:.
advice on how to simplify the graph would be welcome. I want to define several graphs and compare them, therefore the "complicated" structure.
my graph:
##fully connected with hidden layer
def createFullyConnected():
graphFully = tf.Graph()
with graphFully.as_default():
def constructGraph(dataset, weights1, biases1, weights2, biases2):
logits1 = tf.matmul(dataset, weights1) + biases1
hiddenl = tf.nn.relu(logits1)
logits2 = tf.matmul(hiddenl, weights2) + biases2
return logits2
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.01)
return tf.Variable(initial, name='weights')
def bias_variable(shape):
initial = tf.constant(0.0, shape=shape)
return tf.Variable(initial, name='biases')
# Input data. For the training data, we use a placeholder that will be fed
# at run time with a training minibatch.
tf_train_dataset = tf.placeholder(tf.float32,
shape=(batch_size, image_size * image_size), name='train_data')
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels), name='train_labels')
tf_valid_dataset = tf.constant(validation[0], name='valid_labels')
tf_test_dataset = tf.constant(test[0], name='test_labels')
# Variables.
with tf.name_scope('hidden') as scope:
weights1 = weight_variable([image_size * image_size, 1024])
biases1 = bias_variable([1024])
weights2 = weight_variable([1024, num_labels])
biases2 = bias_variable([num_labels])
# Training computation.
logits = constructGraph(tf_train_dataset, weights1, biases1, weights2, biases2)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(constructGraph(tf_valid_dataset, weights1, biases1, weights2, biases2))
test_prediction = tf.nn.softmax(constructGraph(tf_test_dataset, weights1, biases1, weights2, biases2))
# We write the graph out to the `logs` directory
tf.summary.FileWriter("logs", graphFully).close()
return (graphFully, optimizer, train_prediction, valid_prediction, test_prediction)
and the evaluation:
def evaluate(graph, optimizer, train_prediction, valid_prediction, test_prediction):
num_steps = 3001
train_dataset = train[0]
train_labels = train[1]
valid_labels = validation[1]
test_labels = test[1]
outlier_labels = outlier[1]
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print("Initialized")
for step in range(num_steps):
# Pick an offset within the training data, which has been randomized.
# Note: we could use better randomization across epochs.
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
# Generate a minibatch.
batch_data = train_dataset[offset:(offset + batch_size), :]
batch_labels = train_labels[offset:(offset + batch_size), :]
# Prepare a dictionary telling the session where to feed the minibatch.
# The key of the dictionary is the placeholder node of the graph to be fed,
# and the value is the numpy array to feed to it.
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 500 == 0):
print("Minibatch loss at step %d: %f" % (step, l))
print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
print("Validation accuracy: %.1f%%" % accuracy(
valid_prediction.eval(), valid_labels))
print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
Here the errors occur due to out of scope of the two placeholder tf_train_dataset and tf_train_labels. You need to access these two tensors from th graph inside evaluate function.
def evaluate(...):
...
tf_train_dataset = graph.get_tensor_by_name('train_data:0')
tf_train_labels = graph.get_tensor_by_name('train_labels:0')
with tf.Session(graph=graph) as session:
...
I have a checkpoint which is trained with 11 classes. I added one class to my dataset and trying to restore it in order to retain the CNN but it gave me an error related to shape because the previous one was trained with 11 classes and actually have 12 classes, did i saved the weights and biases variable in a right way ? what should I do ? here is the code:
batch_size = 10
num_hidden = 64
num_channels = 1
depth = 32
....
graph = tf.Graph()
with graph.as_default():
# Input data.
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, IMAGE_SIZE_H, IMAGE_SIZE_W, num_channels))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
w_b = {
'weight_0': tf.Variable(tf.random_normal([patch_size_1, patch_size_1, num_channels, depth],stddev=0.1)),
'weight_1': tf.Variable(tf.random_normal([patch_size_2, patch_size_2, depth, depth], stddev=0.1)),
'weight_2': tf.Variable(tf.random_normal([patch_size_3, patch_size_3, depth, depth], stddev=0.1)),
'weight_3': tf.Variable(tf.random_normal([IMAGE_SIZE_H // 32 * IMAGE_SIZE_W // 32 * depth, num_hidden], stddev=0.1)),
'weight_4': tf.Variable(tf.random_normal([num_hidden, num_labels], stddev=0.1)),
'bias_0' : tf.Variable(tf.zeros([depth])),
'bias_1' : tf.Variable(tf.constant(1.0, shape=[depth])),
'bias_2' : tf.Variable(tf.constant(1.0, shape=[depth])),
'bias_3' : tf.Variable(tf.constant(1.0, shape=[num_hidden])),
'bias_4' : tf.Variable(tf.constant(1.0, shape=[num_labels]))
}
# Model.
def model(data):
conv_1 = tf.nn.conv2d(data, w_b['weight_0'] , [1, 2, 2, 1], padding='SAME')
hidden_1 = tf.nn.relu(conv_1 + w_b['bias_0'])
pool_1 = tf.nn.max_pool(hidden_1,ksize = [1,5,5,1], strides= [1,2,2,1],padding ='SAME' )
conv_2 = tf.nn.conv2d(pool_1, w_b['weight_1'], [1, 2, 2, 1], padding='SAME')
hidden_2 = tf.nn.relu(conv_2 + w_b['bias_1'])
conv_3 = tf.nn.conv2d(hidden_2, w_b['weight_2'], [1, 2, 2, 1], padding='SAME')
hidden_3 = tf.nn.relu(conv_3 + w_b['bias_2'])
pool_2 = tf.nn.max_pool(hidden_3,ksize = [1,3,3,1], strides= [1,2,2,1],padding ='SAME' )
shape = pool_2.get_shape().as_list()
reshape = tf.reshape(pool_2, [shape[0], shape[1] * shape[2] * shape[3]])
hidden_4 = tf.nn.relu(tf.matmul(reshape, w_b['weight_3']) + w_b['bias_3'])
return tf.matmul(hidden_4, w_b['weight_4']) + w_b['bias_4']
# Training computation.
logits = model(tf_train_dataset)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
test_prediction = tf.nn.softmax(model(tf_test_dataset))
init = tf.initialize_all_variables()
w_b_saver = tf.train.Saver(var_list = w_b)
num_steps = 1001
with tf.Session(graph=graph) as sess:
ckpt = ("/home/..../w_b_models.ckpt")
if os.path.isfile(ckpt) :
w_b_saver.restore(sess,ckpt)
print("restore complete")
print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval() , test_labels))
else:
print("Error while loading model checkpoint.")
print('Initialized')
sess.run(init)
for step in range(num_steps):
.....
accuracy(test_prediction.eval(),test_labels, force = False ))
save_path_w_b = w_b_saver.save(sess, "/home/...../w_b_models.ckpt")
print("Model saved in file: %s" % save_path_w_b)
and here is the error :
InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape= [64,12] rhs shape= [64,11]
[[Node: save/Assign_9 = Assign[T=DT_FLOAT, _class=["loc:#Variable_4"], use_locking=true, validate_shape=true, _device="/job:localhost/replica:0/task:0/gpu:0"](Variable_4, save/restore_slice_9/_12)]]
I believe the problem is you need to remove this one from w_b then save it then restore it as you're doing.
Remove this:
'weight_4': tf.Variable(tf.random_normal([num_hidden, num_labels], stddev=0.1)),
Then it should work. Main reason is that you're changing number of labels and expecting it to restore to this same variable. As a side note it's better to use tf.get_variable instead of tf.Variable.
Updated answer:
make a new variable called
w_b_to_save = {
'weight_0': tf.Variable(tf.random_normal([patch_size_1, patch_size_1, num_channels, depth],stddev=0.1)),
'weight_1': tf.Variable(tf.random_normal([patch_size_2, patch_size_2, depth, depth], stddev=0.1)),
'weight_2': tf.Variable(tf.random_normal([patch_size_3, patch_size_3, depth, depth], stddev=0.1)),
'weight_3': tf.Variable(tf.random_normal([IMAGE_SIZE_H // 32 * IMAGE_SIZE_W // 32 * depth, num_hidden], stddev=0.1)),
'bias_0' : tf.Variable(tf.zeros([depth])),
'bias_1' : tf.Variable(tf.constant(1.0, shape=[depth])),
'bias_2' : tf.Variable(tf.constant(1.0, shape=[depth])),
'bias_3' : tf.Variable(tf.constant(1.0, shape=[num_hidden])),
}
...
w_b_saver = tf.train.Saver(var_list = w_b_to_save)
now you'll be able to save just the ones you want. This is a bit excessive to create a new variable that's basically the same as the last one but it's to show the point that you can't both save the last layer, and restore it while changing it.
I have created a model using the following code below:
# Deep Learning
# In[25]:
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
# In[37]:
pickle_file = 'notMNIST.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset']
valid_labels = save['valid_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
del save # hint to help gc free up memory
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
print(test_labels)
# Reformat into a TensorFlow-friendly shape:
# - convolutions need the image data formatted as a cube (width by height by #channels)
# - labels as float 1-hot encodings.
# In[38]:
image_size = 28
num_labels = 10
num_channels = 1 # grayscale
import numpy as np
def reformat(dataset, labels):
dataset = dataset.reshape(
(-1, image_size, image_size, num_channels)).astype(np.float32)
#print(np.arange(num_labels))
labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
#print(labels[0,:])
print(labels[0])
return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
#print(labels[0])
# In[39]:
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
# Let's build a small network with two convolutional layers, followed by one fully connected layer. Convolutional networks are more expensive computationally, so we'll limit its depth and number of fully connected nodes.
# In[47]:
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
# Input data.
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, image_size, image_size, num_channels))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
layer1_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights")
layer1_biases = tf.Variable(tf.zeros([depth]),name = "layer1_biases")
layer2_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, depth, depth], stddev=0.1),name = "layer2_weights")
layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]),name ="layer2_biases")
layer3_weights = tf.Variable(tf.truncated_normal(
[image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1),name="layer3_biases")
layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]),name = "layer3_biases")
layer4_weights = tf.Variable(tf.truncated_normal(
[num_hidden, num_labels], stddev=0.1),name = "layer4_weights")
layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]),name = "layer4_biases")
# Model.
def model(data):
conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer1_biases)
conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer2_biases)
shape = hidden.get_shape().as_list()
reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
return tf.matmul(hidden, layer4_weights) + layer4_biases
# Training computation.
logits = model(tf_train_dataset)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
test_prediction = tf.nn.softmax(model(tf_test_dataset))
# In[48]:
num_steps = 1001
#saver = tf.train.Saver()
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print('Initialized')
for step in range(num_steps):
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
batch_labels = train_labels[offset:(offset + batch_size), :]
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 50 == 0):
print('Minibatch loss at step %d: %f' % (step, l))
print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels))
print('Validation accuracy: %.1f%%' % accuracy(
valid_prediction.eval(), valid_labels))
print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
save_path = tf.train.Saver().save(session, "/tmp/model.ckpt")
print("Model saved in file: %s" % save_path)
I have saved the model and wrote another python program where i am trying to restore the model and use it for classification of my images , but i am not being able to create a 4D tensor of the image , that i have to pass as input to the model.
The code of the python file is as follows :
# In[8]:
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
from scipy import ndimage
# In[9]:
image_size = 28
num_labels = 10
num_channels = 1 # grayscale
import numpy as np
# In[10]:
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
# In[15]:
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64
pixel_depth =255
graph = tf.Graph()
with graph.as_default():
'''# Input data.
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, image_size, image_size, num_channels))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
#tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)'''
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, image_size, image_size, num_channels))
# Variables.
layer1_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights")
layer1_biases = tf.Variable(tf.zeros([depth]),name = "layer1_biases")
layer2_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, depth, depth], stddev=0.1),name = "layer2_weights")
layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]),name ="layer2_biases")
layer3_weights = tf.Variable(tf.truncated_normal(
[image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1),name="layer3_biases")
layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]),name = "layer3_biases")
layer4_weights = tf.Variable(tf.truncated_normal(
[num_hidden, num_labels], stddev=0.1),name = "layer4_weights")
layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]),name = "layer4_biases")
saver = tf.train.Saver()
tf_
# Model.
def model(data):
conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer1_biases)
conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME')
hidden = tf.nn.relu(conv + layer2_biases)
shape = hidden.get_shape().as_list()
reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]])
hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
return tf.matmul(hidden, layer4_weights) + layer4_biases
valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
#test_prediction = tf.nn.softmax(model(tf_test_dataset))
# In[19]:
with tf.Session(graph=graph) as sess:
# Restore variables from disk.
saver.restore(sess, "/tmp/model.ckpt")
print("Model restored.")
image_data = (ndimage.imread('notMNIST_small/A/QXJyaWJhQXJyaWJhU3RkLm90Zg==.png').astype(float) -
pixel_depth / 2) / pixel_depth
data = [0:,image_data:,]
sess.run(valid_prediction,feed_dict={tf_valid_dataset:data})
# Do some work with the model
As you can see in ln[19] i have restored my model and want to pass an image to the model by creating a 4d Tensor , I am reading the image and then trying to convert it to a 4d tensor but the ysntax for creating it is wrong in my code , thus need help in correcting it .
Assuming that image_data is a grayscale image, it should be a 2-D NumPy array. You can convert it to a 4-D array with the following:
data = image_data[np.newaxis, ..., np.newaxis]
The np.newaxis adds a new dimension of size 1 in the first (batch size) and last (channels) dimensions. It is equivalent to the following, using np.expand_dims():
data = np.expand_dims(np.expand_dims(image_data, 0), -1)
On the other hand, if you are working with RGB data, you will need to convert it to fit the model. You could for example define a placeholder for the image input:
input_placeholder = tf.placeholder(tf.float32, shape=[None, image_size, image_size, 3])
input_grayscale = tf.image.rgb_to_grayscale(input_placeholder)
prediction = tf.nn.softmax(model(input_grayscale))
image_data = ... # Load from file
data = image_data[np.newaxis, ...] # Only add a batch dimension.
prediction_val = sess.run(prediction, feed_dict={input_placeholder: data})
I am trying to pass an image to the model that i have created by following the 2_fullyconnected.ipynb udacity assignment.
The code in which i have created the model is shown below .
# In[1]:
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
# First reload the data we generated in `1_notmnist.ipynb`.
# In[2]:
pickle_file = 'notMNIST.pickle'
with open(pickle_file, 'rb') as f:
save = pickle.load(f)
train_dataset = save['train_dataset']
train_labels = save['train_labels']
valid_dataset = save['valid_dataset']
valid_labels = save['valid_labels']
test_dataset = save['test_dataset']
test_labels = save['test_labels']
del save # hint to help gc free up memory
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
print(train_dataset[0])
print(train_labels[0])
# Reformat into a shape that's more adapted to the models we're going to train:
# - data as a flat matrix,
# - labels as float 1-hot encodings.
# In[3]:
image_size = 28
num_labels = 10
def reformat(dataset, labels):
print(type(dataset))
#print(dataset[0])
dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32)
# Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...]
labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
#stochastic gradient descent training
# In[7]:
batch_size = 128
graph = tf.Graph()
with graph.as_default():
# Input data. For the training data, we use a placeholder that will be fed
# at run time with a training minibatch.
tf_train_dataset = tf.placeholder(tf.float32,
shape=(batch_size, image_size * image_size))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
weights = tf.Variable(
tf.truncated_normal([image_size * image_size, num_labels]),name = "weights")
biases = tf.Variable(tf.zeros([num_labels]),name ="biases")
# Training computation.
logits = tf.matmul(tf_train_dataset, weights) + biases
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(
tf.matmul(tf_valid_dataset, weights) + biases)
test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)
# In[9]:
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
# Let's run it:
# In[10]:
num_steps = 3001
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
print("Initialized")
for step in range(num_steps):
# Pick an offset within the training data, which has been randomized.
# Note: we could use better randomization across epochs.
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
# Generate a minibatch.
batch_data = train_dataset[offset:(offset + batch_size), :]
batch_labels = train_labels[offset:(offset + batch_size), :]
# Prepare a dictionary telling the session where to feed the minibatch.
# The key of the dictionary is the placeholder node of the graph to be fed,
# and the value is the numpy array to feed to it.
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 500 == 0):
print("Minibatch loss at step %d: %f" % (step, l))
print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
print("Validation accuracy: %.1f%%" % accuracy(
valid_prediction.eval(), valid_labels))
print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
save_path = tf.train.Saver().save(session, "/tmp/important_model/model.ckpt")
print("Model saved in file: %s" % save_path)
The model is saved in /tmp/important_model/.
Tree structure for that folder is as follows:
important_model/
|-- checkpoint
|-- model.ckpt
`-- model.ckpt.meta
Now i am creating a new file in which i am trying to restore my model and then pass an image to the model for classification .
I have created the graph in the new python file as well , which is necessary for restoring the model (I think, I could be wrong. please correct me if i am wrong).
# In[16]:
# These are all the modules we'll be using later. Make sure you can import them
# before proceeding further.
from __future__ import print_function
import numpy as np
import tensorflow as tf
from six.moves import cPickle as pickle
from six.moves import range
from scipy import ndimage
# In[17]:
image_size = 28
num_labels = 10
# In[25]:
# With gradient descent training, even this much data is prohibitive.
# Subset the training data for faster turnaround.
#train_subset = 1000
batch_size = 1
graph = tf.Graph()
with graph.as_default():
# Variables.
# These are the parameters that we are going to be training. The weight
# matrix will be initialized using random valued following a (truncated)
# normal distribution. The biases get initialized to zero.
# Variables.
#saver = tf.train.Saver()
weights = tf.Variable(
tf.truncated_normal([image_size * image_size, num_labels]),name = "weights")
biases = tf.Variable(tf.zeros([num_labels]),name ="biases")
tf_valid_dataset = tf.placeholder(tf.float32,
shape=(batch_size, image_size * image_size))
valid_prediction = tf.nn.softmax(
tf.matmul(tf_valid_dataset, weights) + biases)
# In[26]:
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
# In[34]:
pixel_depth = 255
image_data = (ndimage.imread('notMNIST_small/A/QXJyaWJhQXJyaWJhU3RkLm90Zg==.png').astype(float) -
pixel_depth / 2) / pixel_depth
print(image_data.shape)
resized_data = image_data.reshape((-1,784))
print(resized_data.shape)
with tf.Session(graph=graph) as session:
tf.train.Saver().restore(session, "/tmp/important_model/model.ckpt")
print("Model restored.")
session.run(valid_prediction,feed_dict={tf_valid_dataset:resized_data})
When i am executing ln[34] in this ipython notebookthe output that is coming is :
(28, 28)
(1, 784)
Model restored
I want to tell the 5 probable labels which the given image may belong to but don't know how to do it , The above program doesn't shows any error but neither shows the desired output . I thought i will get the probabilities of the image being in all classes as i have passed my image in tf.nn.softmax function but unfortunately not getting anything .
Any help would be appreciated.
The following line in your code computes a probability distribution across the possible output labels for each image in your data set (in this case a single image):
session.run(valid_prediction,feed_dict={tf_valid_dataset:resized_data})
The result of this method is a NumPy array of shape (1, 10). To see the probabilities, you can simply print the array:
result = session.run(valid_prediction,feed_dict={tf_valid_dataset:resized_data})
print(result)
There are many ways that you can get the top k predictions for your image. One of the easiest is to use TensorFlow's tf.nn.top_k() operator when defining your graph:
valid_prediction = tf.nn.softmax(tf.matmul(tf_valid_dataset, weights) + biases)
top_5_labels = tf.nn.top_k(valid_prediction, k=5)
# ...
result = session.run(top_5_labels, feed_dict={tf_valid_dataset: resized_data})
print(result)