I have browsed the tutorial of eigen at
https://eigen.tuxfamily.org/dox-devel/group__TutorialMatrixArithmetic.html
it said
"Note: for BLAS users worried about performance, expressions such as c.noalias() -= 2 * a.adjoint() * b; are fully optimized and trigger a single gemm-like function call."
but how about computation like H.transpose() * H , because it's result is a symmetric matrix so it should only need half time as normal A*B, but in my test, H.transpose() * H spend same time as H.transpose() * B. does eigen have special optimization for this situation , like opencv, it has similar function.
I know symmetric optimization will break the vectorization , I just want to know if eigen have solution which could provide both symmetric optimization and vectorization
You are right, you need to tell Eigen that the result is symmetric this way:
Eigen::MatrixXd H = Eigen::MatrixXd::Random(m,n);
Eigen::MatrixXd Z = Eigen::MatrixXd::Zero(n,n);
Z.template selfadjointView<Eigen::Lower>().rankUpdate(H.transpose());
The last line computes Z += H * H^T within the lower triangular part. The upper part is left unchanged. You want a full matrix, then copy the lower part to the upper one:
Z.template triangularView<Eigen::Upper>() = Z.transpose();
This rankUpdate routine is fully vectorized and comparable to the BLAS equivalent. For small matrices, better perform the full product.
See also the respective doc.
Related
When we need to optimize a function on the positive real half-line, and we only have non-constraints optimization routines, we use y = exp(x), or y = x^2 to map to the real line and still optimize on the log or the (signed) square root of the variable.
Can we do something similar for linear constraints, of the form Ax = b where, for x a d-dimensional vector, A is a (N,n)-shaped matrix and b is a vector of length N, defining the constraints ?
While, as Ervin Kalvelaglan says this is not always a good idea, here is one way to do it.
Suppose we take the SVD of A, getting
A = U*S*V'
where if A is n x m
U is nxn orthogonal,
S is nxm, zero off the main diagonal,
V is mxm orthogonal
Computing the SVD is not a trivial computation.
We first zero out the elements of S which we think are non-zero just due to noise -- which can be a slightly delicate thing to do.
Then we can find one solution x~ to
A*x = b
as
x~ = V*pinv(S)*U'*b
(where pinv(S) is the pseudo inverse of S, ie replace the non zero elements of the diagonal by their multiplicative inverses)
Note that x~ is a least squares solution to the constraints, so we need to check that it is close enough to being a real solution, ie that Ax~ is close enough to b -- another somewhat delicate thing. If x~ doesn't satisfy the constraints closely enough you should give up: if the constraints have no solution neither does the optimisation.
Any other solution to the constraints can be written
x = x~ + sum c[i]*V[i]
where the V[i] are the columns of V corresponding to entries of S that are (now) zero. Here the c[i] are arbitrary constants. So we can change variables to using the c[] in the optimisation, and the constraints will be automatically satisfied. However this change of variables could be somewhat irksome!
I want to multiple matrix with self transposed. The size of matrix about X[8, 100].
Now it looks " MatrixXf h = X*X.transpose()"
a) Is it possible to use faster multiplication using explicit facts:
Result matrix is symmetric
The X matrix use same data so, can use custom procedure for multiplication.
?
b)Also i can generate X matrix as transposed and use X.transpose()*X, whitch i should prefer for my dimensions ?
c) Any tips on faster multiplication of such matrixes.
Thanks.
(a) Your matrix is too small to take advantage of the symmetry of the result because if you do so, then you will loose vectorization. So there is not much you can do.
(b) The default column storage should be fine for that example.
(c) Make sure you compile with optimizations ON, that you enabled SSE2 (this is the default on 64 bits systems), the devel branch is at least twice as fast for such sizes, and you can get additional speedup by enabling AVX.
I have two large square sparse matrices, A & B, and need to compute the following: A * B^-1 in the most efficient way. I have a feeling that the answer involves using scipy.sparse, but can't for the life of me figure it out.
After extensive searching, I have run across the following thread: Efficient numpy / lapack routine for product of inverse and sparse matrix? but can't figure out what the most efficient way would be.
Someone suggested using LU decomposition which is built into the sparse module of scipy, but when I try and do LU on sample matrix is says the result is singular (although when I just do a * B^-1 i get an answer). I have also heard someone suggest using linalg.spsolve(), but i can't figure out how to implement this as it requires a vector as the second argument.
If it helps, once I have the solution s.t. A * B^-1 = C, i only need to know the value for one row of the matrix C. The matrices will be roughly 1000x1000 to 1500x1500.
Actually 1000x1000 matrices are not that large. You can compute the inverse of such a matrix using numpy.linalg.inv(B) in less than 1 second on a modern desktop computer.
But you can be much more efficient if you rewrite your problem taking into account the fact that you only need one row of C (this is actually very often the case).
Let us write d_i = [0 0 0 ... 0 1 0 ... 0 ], a vector with only one one on the i-th element.
You can write, if ^t denotes the transpose :
AB^-1 = C <=> A = CB <=> A^t = B^t C^t
For the i-th row :
A^t d_i = B^t C^t d_i <=> a_i = B^t c_i
So you have a linear inverse problem which can be solved using numpy.linalg.solve
ci = np.linalg.solve(B.T, a[i])
I am computing a similarity matrix based on Euclidean distance in MATLAB. My code is as follows:
for i=1:N % M,N is the size of the matrix x for whose elements I am computing similarity matrix
for j=1:N
D(i,j) = sqrt(sum(x(:,i)-x(:,j)).^2)); % D is the similarity matrix
end
end
Can any help with optimizing this = reducing the for loops as my matrix x is of dimension 256x30000.
Thanks a lot!
--Aditya
The function to do so in matlab is called pdist. Unfortunately it is painfully slow and doesnt take Matlabs vectorization abilities into account.
The following is code I wrote for a project. Let me know what kind of speed up you get.
Qx=repmat(dot(x,x,2),1,size(x,1));
D=sqrt(Qx+Qx'-2*x*x');
Note though that this will only work if your data points are in the rows and your dimensions the columns. So for example lets say I have 256 data points and 100000 dimensions then on my mac using x=rand(256,100000) and the above code produces a 256x256 matrix in about half a second.
There's probably a better way to do it, but the first thing I noticed was that you could cut the runtime in half by exploiting the symmetry D(i,j)==D(i,j)
You can also use the function norm(x(:,i)-x(:,j),2)
I think this is what you're looking for.
D=zeros(N);
jIndx=repmat(1:N,N,1);iIndx=jIndx'; %'# fix SO's syntax highlighting
D(:)=sqrt(sum((x(iIndx(:),:)-x(jIndx(:),:)).^2,2));
Here, I have assumed that the distance vector, x is initalized as an NxM array, where M is the number of dimensions of the system and N is the number of points. So if your ordering is different, you'll have to make changes accordingly.
To start with, you are computing twice as much as you need to here, because D will be symmetric. You don't need to calculate the (i,j) entry and the (j,i) entry separately. Change your inner loop to for j=1:i, and add in the body of that loop D(j,i)=D(i,j);
After that, there's really not much redundancy left in what that code does, so your only room left for improvement is to parallelize it: if you have the Parallel Computing Toolbox, convert your outer loop to a parfor and before you run it, say matlabpool(n), where n is the number of threads to use.
edit
So based on the answers so far (thanks for taking your time) I'm getting the sense that I'm probably NOT looking for a Normal Distribution function. Perhaps I'll try to re-describe what I'm looking to do.
Lets say I have an object that returns a number of 0 to 10. And that number controls "speed". However instead of 10 being the top speed, I need 5 to be the top speed, and anything lower or higher would slow down accordingly. (with easing, thus the bell curve)
I hope that's clearer ;/
-original question
These are the times I wish I remembered something from math class.
I'm trying to figure out how to write a function in obj-C where I define the boundries, ex (0 - 10) and then if x = foo y = ? .... where x runs something like 0,1,2,3,4,5,6,7,8,9,10 and y runs 0,1,2,3,4,5,4,3,2,1,0 but only on a curve
Something like the attached image.
I tried googling for Normal Distribution but its way over my head. I was hoping to find some site that lists some useful algorithms like these but wasn't very successful.
So can anyone help me out here ? And if there is some good sites which shows useful mathematical functions, I'd love to check them out.
TIA!!!
-added
I'm not looking for a random number, I'm looking for.. ex: if x=0 y should be 0, if x=5 y should be 5, if x=10 y should be 0.... and all those other not so obvious in between numbers
alt text http://dizy.cc/slider.gif
Okay, your edit really clarifies things. You're not looking for anything to do with the normal distribution, just a nice smooth little ramp function. The one Paul provides will do nicely, but is tricky to modify for other values. It can be made a little more flexible (my code examples are in Python, which should be very easy to translate to any other language):
def quarticRamp(x, b=10, peak=5):
if not 0 <= x <= b:
raise ValueError #or return 0
return peak*x*x*(x-b)*(x-b)*16/(b*b*b*b)
Parameter b is the upper bound for the region you want to have a slope on (10, in your example), and peak is how high you want it to go (5, in the example).
Personally I like a quadratic spline approach, which is marginally cheaper computationally and has a different curve to it (this curve is really nice to use in a couple of special applications that don't happen to matter at all for you):
def quadraticSplineRamp(x, a=0, b=10, peak=5):
if not a <= x <= b:
raise ValueError #or return 0
if x > (b+a)/2:
x = a + b - x
z = 2*(x-a)/b
if z > 0.5:
return peak * (1 - 2*(z-1)*(z-1))
else:
return peak * (2*z*z)
This is similar to the other function, but takes a lower bound a (0 in your example). The logic is a little more complex because it's a somewhat-optimized implementation of a piecewise function.
The two curves have slightly different shapes; you probably don't care what the exact shape is, and so could pick either. There are an infinite number of ramp functions meeting your criteria; these are two simple ones, but they can get as baroque as you want.
The thing you want to plot is the probability density function (pdf) of the normal distribution. You can find it on the mighty Wikipedia.
Luckily, the pdf for a normal distribution is not difficult to implement - some of the other related functions are considerably worse because they require the error function.
To get a plot like you showed, you want a mean of 5 and a standard deviation of about 1.5. The median is obviously the centre, and figuring out an appropriate standard deviation given the left & right boundaries isn't particularly difficult.
A function to calculate the y value of the pdf given the x coordinate, standard deviation and mean might look something like:
double normal_pdf(double x, double mean, double std_dev) {
return( 1.0/(sqrt(2*PI)*std_dev) *
exp(-(x-mean)*(x-mean)/(2*std_dev*std_dev)) );
}
A normal distribution is never equal to 0.
Please make sure that what you want to plot is indeed a
normal distribution.
If you're only looking for this bell shape (with the tangent and everything)
you can use the following formula:
x^2*(x-10)^2 for x between 0 and 10
0 elsewhere
(Divide by 125 if you need to have your peek on 5.)
double bell(double x) {
if ((x < 10) && (x>0))
return x*x*(x-10.)*(x-10.)/125.;
else
return 0.;
}
Well, there's good old Wikipedia, of course. And Mathworld.
What you want is a random number generator for "generating normally distributed random deviates". Since Objective C can call regular C libraries, you either need a C-callable library like the GNU Scientific Library, or for this, you can write it yourself following the description here.
Try simulating rolls of dice by generating random numbers between 1 and 6. If you add up the rolls from 5 independent dice rolls, you'll get a surprisingly good approximation to the normal distribution. You can roll more dice if you'd like and you'll get a better approximation.
Here's an article that explains why this works. It's probably more mathematical detail than you want, but you could show it to someone to justify your approach.
If what you want is the value of the probability density function, p(x), of a normal (Gaussian) distribution of mean mu and standard deviation sigma at x, the formula is
p(x) = exp( ((x-mu)^2)/(2*sigma^2) ) / (sigma * 2 * sqrt(pi))
where pi is the area of a circle divided by the square of its radius (approximately 3.14159...). Using the C standard library math.h, this is:
#include <math>
double normal_pdf(double x, double mu, double sigma) {
double n = sigma * 2 * sqrt(M_PI); //normalization factor
p = exp( -pow(x-mu, 2) / (2 * pow(sigma, 2)) ); // unnormalized pdf
return p / n;
}
Of course, you can do the same in Objective-C.
For reference, see the Wikipedia or MathWorld articles.
It sounds like you want to write a function that yields a curve of a specific shape. Something like y = f(x), for x in [0:10]. You have a constraint on the max value of y, and a general idea of what you want the curve to look like (somewhat bell-shaped, y=0 at the edges of the x range, y=5 when x=5). So roughly, you would call your function iteratively with the x range, with a step that gives you enough points to make your curve look nice.
So you really don't need random numbers, and this has nothing to do with probability unless you want it to (as in, you want your curve to look like a the outline of a normal distribution or something along those lines).
If you have a clear idea of what function will yield your desired curve, the code is trivial - a function to compute f(x) and a for loop to call it the desired number of times for the desired values of x. Plot the x,y pairs and you're done. So that's your algorithm - call a function in a for loop.
The contents of the routine implementing the function will depend on the specifics of what you want the curve to look like. If you need help on functions that might return a curve resembling your sample, I would direct you to the reading material in the other answers. :) However, I suspect that this is actually an assignment of some sort, and that you have been given a function already. If you are actually doing this on your own to learn, then I again echo the other reading suggestions.
y=-1*abs(x-5)+5