Overflow error VBA - vba

I have this code below, and I'm getting an overflow error at the line:
s = s + (x Mod 10) [first line in the Do Loop]
Why? I declared x and s to be of type Double. Adding two doubles, why is this not working?
Thanks for your help.
Public Sub bidon1()
Dim i As Double, x As Double, s As Double, k As Byte, h As Byte
Dim y(1 To 6) As Double
For i = 1 To 1000000
x = i ^ 3
Do
s = s + (x Mod 10)
x = x \ 10
Loop Until x = 0
If s = x Then
k = k + 1
y(k) = x
If y(6) > 0 Then
For h = 1 To 6
Debug.Print y(h)
Next
Exit Sub
End If
End If
Next
End Sub

The problem is that the VBA mod operator coerces its arguments to be integers (if they are not already so). It is this implicit coercion which is causing the overflow. See this question: Mod with Doubles
On Edit:
Based on your comments, you want to be able to add together the digits in a largish integer. The following function might help:
Function DigitSum(num As Variant) As Long
'Takes a variant which represents an integer type
'such as Integer, Long or Decimal
'and returns the sum of its digits
Dim sum As Long, i As Long, s As String
s = CStr(num)
For i = 1 To Len(s)
sum = sum + Val(Mid(s, i, 1))
Next i
DigitSum = sum
End Function
The following test sub shows how it can be used to correctly get the sum of the digits in 999999^3:
Sub test()
Dim x As Variant, y As Variant
Debug.Print "Naive approach: " & DigitSum(999999 ^ 3)
y = CDec(999999)
x = y * y * y
Debug.Print "CDec approach: " & DigitSum(x)
End Sub
Output:
Naive approach: 63
CDec approach: 108
Since 999999^3 = 999997000002999999, only the second result is accurate. The first result is only the sum of the digits in the string representation of the double 999999^3 = 9.99997000003E+17

Related

VBA: Testing for perfect cubes

I'm trying to write a simple function in VBA that will test a real value and output a string result if it's a perfect cube. Here's my code:
Function PerfectCubeTest(x as Double)
If (x) ^ (1 / 3) = Int(x) Then
PerfectCubeTest = "Perfect"
Else
PerfectCubeTest = "Flawed"
End If
End Function
As you can see, I'm using a simple if statement to test if the cube root of a value is equal to its integer portion (i.e. no remainder). I tried testing the function with some perfect cubes (1, 8, 27, 64, 125), but it only works for the number 1. Any other value spits out the "Flawed" case. Any idea what's wrong here?
You are testing whether the cube is equal to the double supplied.
So for 8 you would be testing whether 2 = 8.
EDIT: Also found a floating point issue. To resolve we will round the decimals a little to try and overcome the issue.
Change to the following:
Function PerfectCubeTest(x As Double)
If Round((x) ^ (1 / 3), 10) = Round((x) ^ (1 / 3), 0) Then
PerfectCubeTest = "Perfect"
Else
PerfectCubeTest = "Flawed"
End If
End Function
Or (Thanks to Ron)
Function PerfectCubeTest(x As Double)
If CDec(x ^ (1 / 3)) = Int(CDec(x ^ (1 / 3))) Then
PerfectCubeTest = "Perfect"
Else
PerfectCubeTest = "Flawed"
End If
End Function
#ScottCraner correctly explains why you were getting incorrect results, but there are a couple other things to point out here. First, I'm assuming that you are taking a Double as input because the range of acceptable numbers is higher. However, by your implied definition of a perfect cube only numbers with an integer cube root (i.e. it would exclude 3.375) need to be evaluated. I'd just test for this up front to allow an early exit.
The next issue you run into is that 1 / 3 can't be represented exactly by a Double. Since you're raising to the inverse power to get your cube root you're also compounding the floating point error. There's a really easy way to avoid this - take the cube root, cube it, and see if it matches the input. You get around the rest of the floating point errors by going back to your definition of a perfect cube as an integer value - just round the cube root to both the next higher and next lower integer before you re-cube it:
Public Function IsPerfectCube(test As Double) As Boolean
'By your definition, no non-integer can be a perfect cube.
Dim rounded As Double
rounded = Fix(test)
If rounded <> test Then Exit Function
Dim cubeRoot As Double
cubeRoot = rounded ^ (1 / 3)
'Round both ways, then test the cube for equity.
If Fix(cubeRoot) ^ 3 = rounded Then
IsPerfectCube = True
ElseIf (Fix(cubeRoot) + 1) ^ 3 = rounded Then
IsPerfectCube = True
End If
End Function
This returned the correct result up to 1E+27 (1 billion cubed) when I tested it. I stopped going higher at that point because the test was taking so long to run and by that point you're probably outside of the range that you would reasonably need it to be accurate.
For fun, here is an implementation of a number-theory based method described here . It defines a Boolean-valued (rather than string-valued) function called PerfectCube() that tests if an integer input (represented as a Long) is a perfect cube. It first runs a quick test which throws away many numbers. If the quick test fails to classify it, it invokes a factoring-based method. Factor the number and check if the multiplicity of each prime factor is a multiple of 3. I could probably optimize this stage by not bothering to find the complete factorization when a bad factor is found, but I had a VBA factoring algorithm already lying around:
Function DigitalRoot(n As Long) As Long
'assumes that n >= 0
Dim sum As Long, digits As String, i As Long
If n < 10 Then
DigitalRoot = n
Exit Function
Else
digits = Trim(Str(n))
For i = 1 To Len(digits)
sum = sum + Mid(digits, i, 1)
Next i
DigitalRoot = DigitalRoot(sum)
End If
End Function
Sub HelperFactor(ByVal n As Long, ByVal p As Long, factors As Collection)
'Takes a passed collection and adds to it an array of the form
'(q,k) where q >= p is the smallest prime divisor of n
'p is assumed to be odd
'The function is called in such a way that
'the first divisor found is automatically prime
Dim q As Long, k As Long
q = p
Do While q <= Sqr(n)
If n Mod q = 0 Then
k = 1
Do While n Mod q ^ k = 0
k = k + 1
Loop
k = k - 1 'went 1 step too far
factors.Add Array(q, k)
n = n / q ^ k
If n > 1 Then HelperFactor n, q + 2, factors
Exit Sub
End If
q = q + 2
Loop
'if we get here then n is prime - add it as a factor
factors.Add Array(n, 1)
End Sub
Function factor(ByVal n As Long) As Collection
Dim factors As New Collection
Dim k As Long
Do While n Mod 2 ^ k = 0
k = k + 1
Loop
k = k - 1
If k > 0 Then
n = n / 2 ^ k
factors.Add Array(2, k)
End If
If n > 1 Then HelperFactor n, 3, factors
Set factor = factors
End Function
Function PerfectCubeByFactors(n As Long) As Boolean
Dim factors As Collection
Dim f As Variant
Set factors = factor(n)
For Each f In factors
If f(1) Mod 3 > 0 Then
PerfectCubeByFactors = False
Exit Function
End If
Next f
'if we get here:
PerfectCubeByFactors = True
End Function
Function PerfectCube(n As Long) As Boolean
Dim d As Long
d = DigitalRoot(n)
If d = 0 Or d = 1 Or d = 8 Or d = 9 Then
PerfectCube = PerfectCubeByFactors(n)
Else
PerfectCube = False
End If
End Function
Fixed the integer division error thanks to #Comintern. Seems to be correct up to 208064 ^ 3 - 2
Function isPerfectCube(n As Double) As Boolean
n = Abs(n)
isPerfectCube = n = Int(n ^ (1 / 3) - (n > 27)) ^ 3
End Function

MS Excel. VBA function returns #value

It would be nice if someone could explain what causes function above return #value error.
Public Function papild(x)
Dim Sum As Double, A As Double, pi As Double,
Sum = 0.5 - (x - pi / 4)
A = -(x - pi / 4)
pi = Application.WorksheetFunction.pi()
Dim k As Integer, i As Integer
k = 2
i = 0
Do While Abs(A) > 0.0001
A = -A * 4 * A * A / (k + i) * (k + i + 1)
Sum = Sum + A
k = k + 1
i = i + 1
Loop
paplid = Sum
End Function
Function takes x value from MS Excel cell and it's equal = -1.5708 (=-PI()/2 #Formula Bar)
In lines 3 and 4 you work with variable pi before setting it in line 5...
Could there be some brackets missing in your formula. It basically says:
A = -4A^3 * (k+i+1)/(k+1)
This obviously drifts to +/- infinite so your loop cannot end.
Also there is a comma too much in the second line and a spelling error in the last line (paplid instead of papild).
Have you tried debugging the code?
When I run the code I get an overflow error # the 6th iteration of the while loop starting with x = -1.5708. Number gets to large to fit inside variable
.Other than that there are some minor things:
missing As Double
Public Function papild(x) As Double
and unnecessary comma at the end
Dim Sum As Double, A As Double, pi As Double,

Finding minimum point of a function

If I have a convex curve, and want to find the minimum point (x,y) using a for or while loop. I am thinking of something like
dim y as double
dim LastY as double = 0
for i = 0 to a large number
y=computefunction(i)
if lasty > y then exit for
next
how can I that minimum point? (x is always > 0 and integer)
Very Close
you just need to
dim y as double
dim smallestY as double = computefunction(0)
for i = 0 to aLargeNumber as integer
y=computefunction(i)
if smallestY > y then smallestY=y
next
'now that the loop has finished, smallestY should contain the lowest value of Y
If this code takes a long time to run, you could quite easily turn it into a multi-threaded loop using parallel.For - for example
dim y as Double
dim smallestY as double = computefunction(0)
Parallel.For(0, aLargeNumber, Sub(i As Integer)
y=computefunction(i)
if smallestY > y then smallestY=y
End Sub)
This would automatically create separate threads for each iteration of the loop.
For a sample function:
y = 0.01 * (x - 50) ^ 2 - 5
or properly written like this:
A minimum is mathematically obvious at x = 50 and y = -5, you can verify with google:
Below VB.NET console application, converted from python, finds a minimum at x=50.0000703584199, y=-4.9999999999505, which is correct for the specified tolerance of 0.0001:
Module Module1
Sub Main()
Dim result As Double = GoldenSectionSearch(AddressOf ComputeFunction, 0, 100)
Dim resultString As String = "x=" & result.ToString + ", y=" & ComputeFunction(result).ToString
Console.WriteLine(resultString) 'prints x=50.0000703584199, y=-4.9999999999505
End Sub
Function GoldenSectionSearch(f As Func(Of Double, Double), xStart As Double, xEnd As Double, Optional tol As Double = 0.0001) As Double
Dim gr As Double = (Math.Sqrt(5) - 1) / 2
Dim c As Double = xEnd - gr * (xEnd - xStart)
Dim d As Double = xStart + gr * (xEnd - xStart)
While Math.Abs(c - d) > tol
Dim fc As Double = f(c)
Dim fd As Double = f(d)
If fc < fd Then
xEnd = d
d = c
c = xEnd - gr * (xEnd - xStart)
Else
xStart = c
c = d
d = xStart + gr * (xEnd - xStart)
End If
End While
Return (xEnd + xStart) / 2
End Function
Function ComputeFunction(x As Double)
Return 0.01 * (x - 50) ^ 2 - 5
End Function
End Module
Side note: your initial attempt to find minimum is assuming a function is discrete, which is very unlikely in real life. What you would get with a simple for loop is a very rough estimate, and a long time to find it, as linear search is least efficient among other methods.

Function to insert a specific formula excel VBA (decimal to fractional inches)

I have a list of distances that I would like to display like you would read off a tape measure, for example 144.125 would display as 144 1/8". I have the following formula
=TEXT(A1,"0"&IF(ABS(A1-ROUND(A1,0))>1/32,"0/"&CHOOSE(ROUND(MOD(A1,1)*16,0),16,8,16,4,16,8,16,2,16,8,16,4,16,8,16),""))&""""
I'd like to simplify it to a 1 argument function (for A1) so I could use it throughout the workbook, but the amount of " quotes and vba keywords is causing problems. Is there an easier way to get a UDF to insert a complicated formula?
If you want to use a UDF with visual basic then try this:
Public Function Fraction(ByVal x As Double, Optional ByVal tol As Double = 1 / 64#) As String
Dim s As Long, w As Long, d As Long, n As Long, f As Double
s = Sgn(x): x = Abs(x)
If s = 0 Then
Fraction = "0"
Exit Function
End If
w = CInt(WorksheetFunction.Floor_Precise(x)): f = x - w
d = CInt(WorksheetFunction.Floor_Precise(1 / tol)): n = WorksheetFunction.Round(f * d, 0)
Dim g As Long
Do
g = WorksheetFunction.Gcd(n, d)
n = n / g
d = d / g
Loop While Abs(g) > 1
Fraction = Trim(IIf(s < 0, "-", vbNullString) + CStr(w) + IIf(n > 0, " " + CStr(n) + "/" + CStr(d), vbNullString))
End Function
With results:
The TEXT function can do this directly:
A B
1 144,1250 144 1/8 "
Formula in B1:
=TEXT(A1;"# ??/??\""")
Greetings
Axel

Do While - Overflow error

This code looks for the column with header "Quantity Dispensed," then convert the strings in the column by treating the right three digits as decimals, e.i. 00009102" = 9.102
Sub ConvertDec()
Dim colNum As Integer
Dim i As Integer
Dim x As Integer
colNum = WorksheetFunction.Match("Quantity Dispensed", ActiveWorkbook.ActiveSheet.Range("1:1"), 0)
i = 2
Do While ActiveWorkbook.ActiveSheet.Cells(i, colNum).Value <> ""
x = Evaluate(Cells(i, colNum).Value)
Cells(i, colNum) = Int(x / 1000) + (x Mod 1000) / 1000
i = i + 1
Loop
End Sub
I'm getting Overflow error on the line "x = Evaluate..." while executing.
The values in the column are in string form. e.g. "0000120000".
120000 is greater than the maximum value of integer 32768. Use the Long type instead.
Simoco