I have written the following function that reads the contents of a text file and panic!s if an error is encountered.
fn get_file_contents(name: String) -> Result<String, io::Error> {
let mut f = try!(File::open(name));
let mut contents = String::new();
try!(f.read_to_string(&mut contents));
Ok(contents)
}
And the contents are extracted from the Result using:
let file_contents = match get_file_contents(file_name) {
Ok(contents) => contents,
Err(err) => panic!("{}", err)
};
I am now trying to reimplement this in an object oriented manner using structures and implementations. I created the following structure:
struct FileReader {
file_name: String,
file_contents: String,
}
and implemented the following methods:
impl FileReader {
fn new(fname: &str) -> FileReader {
FileReader {
file_name: fname.to_string(),
file_contents: String::new(),
}
}
fn get_file_contents(&mut self) {
let mut f = match File::open(&self.file_name) {
Ok(file) => file,
Err(err) => panic!("{}", err)
};
match f.read_to_string(&mut self.file_contents) {
Ok(size) => size,
Err(err) => panic!("{}", err)
};
}
}
In the OO approach, I haven't used the try! macro as I don't want the method to return any value. Is my OO implementation of get_file_contents a typical way of achieving this functionality? If not, can you please suggest an alternative way?
In the OO approach, I haven't used the try! macro as I don't want the method to return any value.
It's unclear why you think that "object oriented" means "doesn't return a value". If an error can occur, the code should indicate that.
Many languages have the equivalent of exceptions — out of band values that are thrown (also known as "returned") from a function or method. Note that this means that these languages allow for two disjoint types to be returned from a given function: the "normal" type and the "exceptional" type. That is a close equivalent for Rust's Result: Result<NormalType, ExceptionalType>.
Exceptional isn't a great term for this, as you should expect that opening a file should fail. There's an infinite number of ways that it could not work, but only a narrow subset of ways that it can succeed.
Panicking is closer to "kill the entire program / thread right now". Unlike C, you are forced to either deal with a problem, pass it back to the caller, or kill the program (panic).
If you would have thrown an exception in a language that supports them, use a Result. If you would have killed the program, or don't want to handle an error, use a panic.
If you want to panic in your particular case, use unwrap, or even better, expect:
fn get_file_contents(&mut self) {
let mut f = File::open(&self.file_name).expect("Couldn't open file");
f.read_to_string(&mut self.file_contents).expect("Couldn't read file");
}
seems kind of clunky to have to deal with the Result for each method.
Which is why the Error Handling section of The Rust Programming Language spends a good amount of time discussing the try! macro:
A cornerstone of error handling in Rust is the try! macro. The try! macro abstracts case analysis like combinators, but unlike combinators, it also abstracts control flow. Namely, it can abstract the early return pattern seen above.
(this makes more sense in context of the page)
I don't want my code to try and recover from the error (most likely caused by the file not being found) - I want it to print a useful error message and then die
Then by all means, panic. There's more succinct AND more detailed ways to do it (as shown above).
Related
In Rust the main function is defined like this:
fn main() {
}
This function does not allow for a return value though. Why would a language not allow for a return value and is there a way to return something anyway? Would I be able to safely use the C exit(int) function, or will this cause leaks and whatnot?
As of Rust 1.26, main can return a Result:
use std::fs::File;
fn main() -> Result<(), std::io::Error> {
let f = File::open("bar.txt")?;
Ok(())
}
The returned error code in this case is 1 in case of an error. With File::open("bar.txt").expect("file not found"); instead, an error value of 101 is returned (at least on my machine).
Also, if you want to return a more generic error, use:
use std::error::Error;
...
fn main() -> Result<(), Box<dyn Error>> {
...
}
std::process::exit(code: i32) is the way to exit with a code.
Rust does it this way so that there is a consistent explicit interface for returning a value from a program, wherever it is set from. If main starts a series of tasks then any of these can set the return value, even if main has exited.
Rust does have a way to write a main function that returns a value, however it is normally abstracted within stdlib. See the documentation on writing an executable without stdlib for details.
As was noted by others, std::process::exit(code: i32) is the way to go here
More information about why is given in RFC 1011: Process Exit. Discussion about the RFC is in the pull request of the RFC.
The reddit thread on this has a "why" explanation:
Rust certainly could be designed to do this. It used to, in fact.
But because of the task model Rust uses, the fn main task could start a bunch of other tasks and then exit! But one of those other tasks may want to set the OS exit code after main has gone away.
Calling set_exit_status is explicit, easy, and doesn't require you to always put a 0 at the bottom of main when you otherwise don't care.
Try:
use std::process::ExitCode;
fn main() -> ExitCode {
ExitCode::from(2)
}
Take a look in doc
or:
use std::process::{ExitCode, Termination};
pub enum LinuxExitCode { E_OK, E_ERR(u8) }
impl Termination for LinuxExitCode {
fn report(self) -> ExitCode {
match self {
LinuxExitCode::E_OK => ExitCode::SUCCESS,
LinuxExitCode::E_ERR(v) => ExitCode::from(v)
}
}
}
fn main() -> LinuxExitCode {
LinuxExitCode::E_ERR(3)
}
You can set the return value with std::os::set_exit_status.
I'm learning Rust and trying to solve some basic algorithm problems with it. In many cases, I want to read lines from stdin, perform some transformation on each line and return a vector of resulting items. One way I did this was like this:
// Fully working Rust code
let my_values: Vec<u32> = stdin
.lock()
.lines()
.filter_map(Result::ok)
.map(|line| line.parse::<u32>())
.filter_map(Result::ok)
.map(|x|x*2) // For example
.collect();
This works but of course silently ignores any errors that may occur. Now what I woud like to do is something along the lines of:
// Pseudo-ish code
let my_values: Result<Vec<u32>, X> = stdin
.lock()
.lines() // Can cause std::io::Error
.map(|line| line.parse::<u32>()) // Can cause std::num::ParseIntError
.map(|x| x*2)
.collect();
Where X is some kind of error type that I can match on afterwards. Preferably I want to perform the whole operation on one line at a time and immediately discard the string data after it has been parsed to an int.
I think I need to create some kind of Enum type to hold the various possible errors, possibly like this:
#[derive(Debug)]
enum InputError {
Io(std::io::Error),
Parse(std::num::ParseIntError),
}
However, I don't quite understand how to put everything together to make it clean and avoid having to explicitly match and cast everywhere. Also, is there some way to automatically create these enum error types or do I have to explicilty enumerate them every time I do this?
You're on the right track.
The way I'd approach this is by using the enum you've defined,
then add implementations of From for the error types you're interested in.
That will allow you to use the ? operator on your maps to get the kind of behaviour you want.
#[derive(Debug)]
enum MyError {
IOError(std::io::Error),
ParseIntError(std::num::ParseIntError),
}
impl From<std::io::Error> for MyError {
fn from(e:std::io::Error) -> MyError {
return MyError::IOError(e)
}
}
impl From<std::num::ParseIntError> for MyError {
fn from(e:std::num::ParseIntError) -> MyError {
return MyError::ParseIntError(e)
}
}
Then you can implement the actual transform as either
let my_values: Vec<_> = stdin
.lock()
.lines()
.map(|line| -> Result<u32,MyError> { Ok(line?.parse::<u32>()?*2) } )
.collect();
which will give you one entry for each input, like: {Ok(x), Err(MyError(x)), Ok(x)}.
or you can do:
let my_values: Result<Vec<_>,MyError> = stdin
.lock()
.lines()
.map(|line| -> Result<u32,MyError> { Ok(line?.parse::<u32>()?*2) } )
.collect();
Which will give you either Err(MyError(...)) or Ok([1,2,3])
Note that you can further reduce some of the error boilerplate by using an error handling crate like snafu, but in this case it's not too much.
libc's error handling is usually to return something < 0 in case of an error. I find myself doing this over and over:
let pid = fork()
if pid < 0 {
// Please disregard the fact that `Err(pid)`
// should be a `&str` or an enum
return Err(pid);
}
I find it ugly that this needs 3 lines of error handling, especially considering that these tests are quite frequent in this kind of code.
Is there a way to return an Err in case fork() returns < 0?
I found two things which are close:
assert_eq!. This needs another line and it panics so the caller cannot handle the error.
Using traits like these:
pub trait LibcResult<T> {
fn to_option(&self) -> Option<T>;
}
impl LibcResult<i64> for i32 {
fn to_option(&self) -> Option<i64> {
if *self < 0 { None } else { Some(*self) }
}
}
I could write fork().to_option().expect("could not fork"). This is now only one line, but it panics instead of returning an Err. I guess this could be solved using ok_or.
Some functions of libc have < 0 as sentinel (e.g. fork), while others use > 0 (e.g. pthread_attr_init), so this would need another argument.
Is there something out there which solves this?
As indicated in the other answer, use pre-made wrappers whenever possible. Where such wrappers do not exist, the following guidelines might help.
Return Result to indicate errors
The idiomatic Rust return type that includes error information is Result (std::result::Result). For most functions from POSIX libc, the specialized type std::io::Result is a perfect fit because it uses std::io::Error to encode errors, and it includes all standard system errors represented by errno values. A good way to avoid repetition is using a utility function such as:
use std::io::{Result, Error};
fn check_err<T: Ord + Default>(num: T) -> Result<T> {
if num < T::default() {
return Err(Error::last_os_error());
}
Ok(num)
}
Wrapping fork() would look like this:
pub fn fork() -> Result<u32> {
check_err(unsafe { libc::fork() }).map(|pid| pid as u32)
}
The use of Result allows idiomatic usage such as:
let pid = fork()?; // ? means return if Err, unwrap if Ok
if pid == 0 {
// child
...
}
Restrict the return type
The function will be easier to use if the return type is modified so that only "possible" values are included. For example, if a function logically has no return value, but returns an int only to communicate the presence of error, the Rust wrapper should return nothing:
pub fn dup2(oldfd: i32, newfd: i32) -> Result<()> {
check_err(unsafe { libc::dup2(oldfd, newfd) })?;
Ok(())
}
Another example are functions that logically return an unsigned integer, such as a PID or a file descriptor, but still declare their result as signed to include the -1 error return value. In that case, consider returning an unsigned value in Rust, as in the fork() example above. nix takes this one step further by having fork() return Result<ForkResult>, where ForkResult is a real enum with methods such as is_child(), and from which the PID is extracted using pattern matching.
Use options and other enums
Rust has a rich type system that allows expressing things that have to be encoded as magic values in C. To return to the fork() example, that function returns 0 to indicate the child return. This would be naturally expressed with an Option and can be combined with the Result shown above:
pub fn fork() -> Result<Option<u32>> {
let pid = check_err(unsafe { libc::fork() })? as u32;
if pid != 0 {
Some(pid)
} else {
None
}
}
The user of this API would no longer need to compare with the magic value, but would use pattern matching, for example:
if let Some(child_pid) = fork()? {
// execute parent code
} else {
// execute child code
}
Return values instead of using output parameters
C often returns values using output parameters, pointer parameters into which the results are stored. This is either because the actual return value is reserved for the error indicator, or because more than one value needs to be returned, and returning structs was badly supported by historical C compilers.
In contrast, Rust's Result supports return value independent of error information, and has no problem whatsoever with returning multiple values. Multiple values returned as a tuple are much more ergonomic than output parameters because they can be used in expressions or captured using pattern matching.
Wrap system resources in owned objects
When returning handles to system resources, such as file descriptors or Windows handles, it good practice to return them wrapped in an object that implements Drop to release them. This will make it less likely that a user of the wrapper will make a mistake, and it makes the use of return values more idiomatic, removing the need for awkward invocations of close() and resource leaks coming from failing to do so.
Taking pipe() as an example:
use std::fs::File;
use std::os::unix::io::FromRawFd;
pub fn pipe() -> Result<(File, File)> {
let mut fds = [0 as libc::c_int; 2];
check_err(unsafe { libc::pipe(fds.as_mut_ptr()) })?;
Ok(unsafe { (File::from_raw_fd(fds[0]), File::from_raw_fd(fds[1])) })
}
// Usage:
// let (r, w) = pipe()?;
// ... use R and W as normal File object
This pipe() wrapper returns multiple values and uses a wrapper object to refer to a system resource. Also, it returns the File objects defined in the Rust standard library and accepted by Rust's IO layer.
The best option is to not reimplement the universe. Instead, use nix, which wraps everything for you and has done the hard work of converting all the error types and handling the sentinel values:
pub fn fork() -> Result<ForkResult>
Then just use normal error handling like try! or ?.
Of course, you could rewrite all of nix by converting your trait to returning Results and including the specific error codes and then use try! or ?, but why would you?
There's nothing magical in Rust that converts negative or positive numbers into a domain specific error type for you. The code you already have is the correct approach, once you've enhanced it to use a Result either by creating it directly or via something like ok_or.
An intermediate solution would be to reuse nix's Errno struct, perhaps with your own trait sugar on top.
so this would need another argument
I'd say it would be better to have different methods: one for negative sentinel values and one for positive sentinel values.
I'm writing a function that iterates over a vector of Result and returns success if they all were successful, or an error if any failed. Limitations in error::Error are frustrating me and I'm not sure how to work around them. Currently I have something like:
let mut errors = Vec::new();
for result in results {
match result {
Err(err) => errors.push(err),
Ok(success) => { ... }
}
}
if errors.is_empty() {
return Ok(())
else {
return Err(MyErrorType(errors))
}
The problem with my current approach is that I can only set one error to be the cause of MyErrorType, and my error's description needs to be a static String so I can't include the descriptions of each of the triggering failures. All of the failures are potentially relevant to the caller.
There is no convention that I know of, and indeed I have never had the issue of attempting to report multiple errors at once...
... that being said, there are two points that may help you:
There is no limitation that the description be a 'static String, you are likely confusing &'static str and &str. In fn description(&self) -> &str, the lifetime of str is linked to the lifetime of self (lifetime elision) and therefore an embedded String satisfies the constraints
Error is an interface to deal with errors uniformly. In this case, indeed, only a single cause was foreseen, however it does not preclude a more specific type to aggregate multiple causes and since Error allows downcasting (Error::is, Error::downcast, ...) the more specific type can be retrieved by the handler and queried in full
As such, I would suggest that you create a new concrete type solely dedicated to holding multiple errors (in a Vec<Box<Error>>), and implementing the Error interface. It's up to you to decide on the description and cause it will expose.
A single type will let your clients test more easily for downcasting than having an unknown (and potentially growing as time goes) number of potential downcast targets.
expanding a bit on point 1 of Matthieu's good answer.
The point where you're likely running into trouble (I know I did when I tried to implement Error) is that you want to have a dynamic description().
// my own error type
#[derive(Debug)] struct MyError { value: u8 }
impl fmt::Display for MyError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "bummer! Got a {}", self.value)
}
}
// I am now tempted to add the problematic value dynamically
// into the description, but I run into trouble with lifetimes
// this DOES NOT COMPILE because the String I'm building
// goes out of scope and I can't return a reference to it
impl error::Error for MyError {
fn description(&self) -> &str {
&format!("can't put a {} here!", self.value)
}
}
solution 1
Don't dynamically build description(). Just use a static str. This is what most implementations of Error on github seem to do.
If you need to retrieve and display (or log) the value you can always access it from your MyError type. Plus Display (that you must implement for all Error impls) does allow you to create dynamic strings.
I created a contrived example on the playground that shows how to track multiple errors.
solution 2
(what Matthieu is suggesting) you can store the error message in the error itself.
#[derive(Debug)] struct MyError { value: u8, msg: String }
impl MyError {
fn new(value: u8) -> MyError {
MyError { value: value, msg: format!("I don't like value {}", value) }
}
}
// now this works because the returned &str has the same lifetime
// as self
impl error::Error for MyError {
fn description(&self) -> &str {
&self.msg
}
}
I have this code
fn get_last_commit () -> String {
Command::new("git")
.arg("rev-parse")
.arg("HEAD")
.output()
.map(|output| {
String::from_utf8(output.stdout).ok().expect("error reading into string")
})
.ok().expect("error invoking git rev-parse")
}
I'd like to be able to cut the ok().expect(..) a bit down so that I ideally have something like that:
fn get_last_commit () -> String {
Command::new("git")
.arg("rev-parse")
.arg("HEAD")
.output()
.and_then(|output| {
String::from_utf8(output.stdout)
})
.ok().expect("error invoking git rev-parse")
}
However, that doesn't work because the errors don't line up leaving me with:
mismatched types:
expected `core::result::Result<_, std::io::error::Error>`,
found `core::result::Result<collections::string::String, collections::string::FromUtf8Error>`
(expected struct `std::io::error::Error`,
found struct `collections::string::FromUtf8Error`)
I know the error handling changed quite a bit within the last month and I have the feeling there should be away to get them aligned without too much hassle. I seem unable to figure it out though.
The problem is that the closure passed to the and_then needs to return a Result with the same error type as the Result that and_then was called on; otherwise, there's no single type that and_then could return; and_then maps one Ok type to another, but keeps the error type the same.
Since you are just throwing away the error value by converting it to an option with ok() that you unwrap anyhow, you can do that before calling and_then, and within the closure, as the Option type returned by and_then on an Option only depends on the value returned by the closure:
fn get_last_commit () -> String {
Command::new("git")
.arg("rev-parse")
.arg("HEAD")
.output()
.ok()
.and_then(|output| {
String::from_utf8(output.stdout).ok()
})
.expect("error invoking git rev-parse")
}
If you actually cared about the error value, you would need to define your own error type that could contain either of the two types of errors, and wrap either of the errors up. The FromError trait and try! macro offer a convenient way to is wrap up the value and return it from one of several places in your function, though in this case map_err would probably be a better way to do that as you are doing it all via chained method calls rather than separate statements.
enum MyError {
Io(IoError),
Utf8(FromUtf8Error)
}
fn get_last_commit () -> Result<String,MyError> {
Command::new("git")
.arg("rev-parse")
.arg("HEAD")
.output()
.map_err(MyError::Io)
.and_then(|output| {
String::from_utf8(output.stdout)
.map_err(MyError::Utf8)
})
}
If you notice, this parallels the earlier solution fairly closely, coercing both of the result types into a single common type; in the first solution, it just throws away the error value by using ok(), while in the second, it preserves the error value so you can return it, but you now need the extra machinery of a type that could wrap either.