Static member variable such as OOP langage - oop

I'm pretty new with Go and then I searched a lot how to have a static class with static function/variables such as C# by example. But, I couldn't find anything which answered well about it. Maybe this question seems stupid, but I don't like either when I'm not sure or when I don't understand completely something.
Let say we have this code:
public class Program
{
public static string name = "Program tester.";
public enum Importance
{
None,
Trivial,
Regular,
Important,
Critical
};
public static void tester(Importance value)
{
// ... Test against known Importance values.
if (value == Importance.Trivial)
{
Console.WriteLine("Not true");
}
else if (value == Importance.Critical)
{
Console.WriteLine("True");
}
}
}
Golang is a C-like if I understand, so does it have some behavior like this one above, such as C++/C# languages? My code above can be achieved as C++/C# or the way to do it is to passing by a language as C (using the C modular programming way)?

There is no inheritance in Go,
but you can do all OOP stuff in Golang way.
also see:
https://github.com/luciotato/golang-notes/blob/master/OOP.md
https://www.goinggo.net/2013/07/object-oriented-programming-in-go.html
1: static var in C# class => global var in Golang package
2: enum in C# => new package with enum name and const type of enum elements
3: class in OOP => struct type
4: class methods => struct with receiver methods
5: C#/Java abstract methods(pure virtual functions in C++) => interface methods like io.Reader
6: public => first letter Upper case Name
7: private => first letter lower case name
8: namespace => package name
9: inheritance => embedded struct and embedded interface
10: Thread => Go routines
11: lock => sync.Mutex
...

There's no real way to get a static member of a struct like you would with a static member of a Java class, but you add metadata or a tag to a struct using StructTags:
https://medium.com/golangspec/tags-in-golang-3e5db0b8ef3e
What are the use(s) for tags in Go?
https://golang.org/pkg/reflect/#StructTag
typically we see them when creating a struct for use with unmarshaing JSON:
type Foo struct {
Bar string `json:"bar,omitempty"`
}

Related

Differences between a class with static members and a namespace/module in typescript

There are a lot of discussions about how and when to use static classes and how to achieve a real static class in typescript. But I have not found any explanation about the differences between a class with only static members paired with an unuseable constructor and a namespace/module.
How do them both affect the global namespace and what is the difference for the memory and usage?
Because in my opinion and what the official documentation says, it would be more easy to achieve the functionality of a static class by using a namespace construct. It is less code and more easy then to use a real class.
You can always look at the compiled javascript output to see the difference. A namespace is an object that will be merged with other namespaces with the same name.
namespace A{
export function b(){
}
}
javascript output:
var A;
(function (A) {
function b() {
}
A.b = b;
})(A || (A = {}));
A class is a function and a static member is a property of the function.
class A{
public static b(){
}
}
javascript output:
var A = /** #class */ (function () {
function A() {
}
A.b = function () {
};
return A;
}());
Both, namespace and class, will occupy the same name "A" in the global namespace. From the perspecive of a client, there is no difference in accessing a static class member or a function inside a namespace:
A.b();
Personally, I don't use static class members or namespaces, i always define functions and variables at the top level inside a module, and use different modules to group different functions.
The typescript homepage has a good topic about this: https://www.typescriptlang.org/docs/handbook/namespaces-and-modules.html

What's the purpose of allowing the declaration of an abstract method in a non-abstract class?

According to this article, it's possible, in Dart, to define a non-abstract class to have an abstract (or not-implemented) method. The abstract method causes a warning, but does not prevent instantiation.
What's the purpose of allowing the declaration of an abstract method in a non-abstract (or concrete) class in Dart? Why was Dart designed to work in this way?
The specification is actually very explicit about declaring abstract methods in a concrete class:
It is a static warning if an abstract member m is declared or inherited in a concrete class
We wish to warn if one declares a concrete class with abstract members.
It is a static warning if a concrete class has an abstract member (declared or inherited).
They don't have any intended purpose for it, which is why they issue warnings. If you're familiar with Java: it's similar to accessing a static member via an object, which is also pointless and triggers a warning.
As for why it passes compilation, Dart uses an optional type system, which means typing concepts should not affect the semantics of the language, and that's simply what Dart is enforcing:
The purpose of an abstract method is to provide a declaration for purposes such as type checking and reflection.
The static checker will report some violations of the type rules, but such violations do not abort compilation or preclude execution.
An abstract method in a concrete class allows you to provide the type signature for a method that is implemented via noSuchMethod() instead. Providing a noSuchMethod() implementation will also silence the warning.
In strong mode, simply having an abstract method in a concrete class will result in an error, unless the class also implements the noSuchMethod() interface.
In short, the purpose of abstract methods in a concrete class is to provide type signatures for noSuchMethod() implementations. This avoids warnings for calling an unknown method and in strong mode (which is the default for dartdevc, and will be first the default and then mandatory for Dart 2.0) these type signatures are necessary for code with noSuchMethod() to even compile, unless the target is of type dynamic.
Example:
class A {
void f();
dynamic noSuchMethod(Invocation inv) => null;
}
void main() {
var a = new A();
a.f();
}
If we replace a.f() with (say) a.f(0), then this will result in an error (in strong mode) for having called the method with the wrong number of parameters. If we omit the void f() declaration, then we'll get an error that A does not have a method f(). If we omit the noSuchMethod() implementation, then the complaint will be that f() lacks a method body, even though A isn't abstract.
The following code provides a more realistic example:
import "dart:mirrors";
class DebugList<T> implements List<T> {
List<T> _delegate;
InstanceMirror _mirror;
DebugList(this._delegate) {
_mirror = reflect(_delegate);
}
dynamic noSuchMethod(Invocation inv) {
print("entering ${inv.memberName}");
var result = _mirror.delegate(inv);
print("leaving ${inv.memberName}");
return result;
}
}
void main() {
List<int> list = new DebugList<int>([1, 2, 3]);
int len = list.length;
for (int i = 0; i < len; i++) print(list[i]);
}
This example creates a debugging decorator for List<T>, showing all method invocations. We use implements List<T> to pull in the entire list interface, inheriting dozens of abstract methods. This would normally result in warnings (or in strong mode, errors) when run through dartanalyzer, as we're missing implementations for all these methods normally provided by List<T>. Providing a noSuchMethod() implementation silences these warnings/errors.
While we could also manually wrap all 50+ methods, this would be a lot of typing. The above approach also will continue to work if new methods are added to the list interface without us having to change our code.
Use cases for explicitly listing methods in a concrete class are less common, but can also occur. An example would be the addition of getters or setters to such a debugging decorator that allows us to inspect or set instance variables of the delegate. We will need to add them to the interface, anyway, to avoid warnings and errors from using them; the noSuchMethod() implementation can then implement them using getField() and setField(). Here's a variant of the previous example, using stacks instead of lists:
// main.dart
import "dart:mirrors";
import "stack.dart";
class DebugStack<T> implements Stack<T> {
Stack<T> _delegate;
InstanceMirror _mirror;
DebugStack(this._delegate) {
_mirror = reflect(_delegate);
}
dynamic _get(Symbol sym) {
// some magic so that we can retrieve private fields
var name = MirrorSystem.getName(sym);
var sym2 = MirrorSystem.getSymbol(name, _mirror.type.owner);
return _mirror.getField(sym2).reflectee;
}
List<T> get _data;
dynamic noSuchMethod(Invocation inv) {
dynamic result;
print("entering ${inv.memberName}");
if (inv.isGetter)
result = _get(inv.memberName);
else
result = _mirror.delegate(inv);
print("leaving ${inv.memberName}");
return result;
}
}
void main() {
var stack = new DebugStack<int>(new Stack<int>.from([1, 2, 3]));
print(stack._data);
while (!stack.isEmpty) {
print(stack.pop());
}
}
// stack.dart
class Stack<T> {
List<T> _data = [];
Stack.empty();
Stack.from(Iterable<T> src) {
_data.addAll(src);
}
void push(T item) => _data.add(item);
T pop() => _data.removeLast();
bool get isEmpty => _data.length == 0;
}
Note that the abstract declaration of the _data getter is crucial for type checking. If we were to remove it, we'd get a warning even without strong mode, and in strong mode (say, with dartdevc or dartanalyzer --strong), it will fail:
$ dartdevc -o main.js main.dart
[error] The getter '_data' isn't defined for the class 'DebugStack<int>' (main.dart, line 36, col 15)
Please fix all errors before compiling (warnings are okay).

How can I mock multiple types when the signature of a concrete method refers to another concrete type, not its interface?

I'm making use of a third party library that doesn't have any interfaces for its classes. I can use them in my structs no problem, but they have side effects that I want to avoid when unit testing.
// Somewhere there are a couple structs, with no interfaces. I don't own the code.
// Each has only one method.
type ThirdPartyEntry struct {}
func (e ThirdPartyEntry) Resolve() string {
// Do some complex stuff with side effects
return "I'm me!"
}
// This struct returns an instance of the other one.
type ThirdPartyFetcher struct {}
func (f ThirdPartyFetcher) FetchEntry() ThirdPartyEntry {
// Do some complex stuff with side effects and return an entry
return ThirdPartyEntry{}
}
// Now my code.
type AwesomeThing interface {
BeAwesome() string
}
// I have a class that makes use of the third party.
type Awesome struct {
F ThirdPartyFetcher
}
func (a Awesome) BeAwesome() string {
return strings.Repeat(a.F.FetchEntry().Resolve(), 3)
}
func NewAwesome(fetcher ThirdPartyFetcher) Awesome {
return Awesome{
F: fetcher,
}
}
func main() {
myAwesome := NewAwesome(ThirdPartyFetcher{})
log.Println(myAwesome.BeAwesome())
}
This works! But I want to write some unit tests, and so I'd like to Mock both the third party structs. To do so I believe I need interfaces for them, but since ThirdPartyFetcher returns ThirdPartyEntrys, I cannot figure out how.
I created a pair of interfaces which match up with the two third party classes. I'd like to then rewrite the Awesome struct and method to use the generic Fetcher interface. In my test, I would call NewAwesome() passing in a testFetcher, a struct which also implements the interface.
type Awesome struct {
F Fetcher
}
func NewAwesome(fetcher Fetcher) Awesome {
return Awesome{
Fetcher: fetcher,
}
}
type Entry interface {
Resolve() string
}
// Double check ThirdPartyEntry implements Entry
var _ Entry = (*ThirdPartyEntry)(nil)
type Fetcher interface {
FetchEntry() Entry
}
// Double check ThirdPartyFetcher implements Fetcher
var _ Fetcher = (*ThirdPartyFetcher)(nil)
I omit the test code because it's not relevant. This fails on the last line shown.
./main.go:49: cannot use (*ThirdPartyFetcher)(nil) (type *ThirdPartyFetcher) as type Fetcher in assignment:
*ThirdPartyFetcher does not implement Fetcher (wrong type for FetchEntry method)
have FetchEntry() ThirdPartyEntry
want FetchEntry() Entry
The signatures are different, even though I already showed that ThirdPartyEntry implements Entry. I believe this is disallowed because to would lead to something like slicing (in the polymorphic sense, not the golang sense). Is there any way for me to write a pair of interfaces? It should be the case that the Awesome class doesn't even know ThirdParty exists - it's abstracted behind the interface and injected when main calls NewAwesome.
It's not very pretty, but one way would be to:
type fetcherWrapper struct {
ThirdPartyFetcher
}
func (fw fetcherWrapper) FetchEntry() Entry {
return fw.ThirdPartyFetcher.FetchEntry()
}
I'd say mocking things that return structs vs interfaces is a relatively common problem without any great solutions apart from a lot of intermediate wrapping.

Should C++/CLI data members be handles or values?

I'm new to C++/CLI and I'm wondering what is "best practice" regarding managed type data members. Declaring as handle:
public ref class A {
public:
A() : myList(gcnew List<int>()) {}
private:
List<int>^ myList;
};
or as a value:
public ref class B {
private:
List<int> myList;
};
Can't seem to find definitive advice on this.
When writing managed C++ code, I'm in favor of following the conventions used by the other managed languages. Therefore, I'd go with handles for class-level data members, and only use values (stack semantics) where you'd use a using statement in C#.
If your class member is a value, then replacing the object entirely means that the object would need a copy constructor defined, and not many .NET classes do. Also, if you want to pass the object to another method, you'll need to use the % operator to convert from List<int> to List<int>^. (Not a big deal to type %, but easy to forget, and the compiler error just says it can't convert List<int> to List<int>^.)
//Example of the `%` operator
void CSharpMethodThatDoesSomethingWithAList(List<int>^ list) { }
List<int> valueList;
CSharpMethodThatDoesSomethingWithAList(%valueList);
List<int>^ handleList = gcnew List<int>();
CSharpMethodThatDoesSomethingWithAList(handleList);
It all depends on the lifetime. When you have a private member which lives exactly as long as the owning class, the second form is preferable.
Personally, I would use the second form. I say this because I use frameworks that are written by other teams of people, and they use this form.
I believe this is because it is cleaner, uses less space, and is easier for the non-author to read. I try to keep in mind that the most concise code, while still being readable by someone with minimal knowledge of the project is best.
Also, I have not encountered any problems with the latter example in terms of readability across header files, methods, classes, or data files ...etc
Though I'm FAR from an expert in the matter, that is what I prefer. Makes more sense to me.
class AlgoCompSelector : public TSelector {
public :
AlgoCompSelector( TTree *tree = 0 );
virtual ~AlgoCompSelector(){ /* */ };
virtual void Init(TTree *tree);
virtual void SlaveBegin(TTree *tree);
virtual Bool_t Process(Long64_t entry);
virtual void Terminate();
virtual Int_t Version() const { return 1; }
void setAlgo( Int_t idx, const Char_t *name, TTree* part2, TTree* part3 );
void setPTthres( Float_t val );
void setEthres( Float_t val );
private:
std::string mAlgoName[2]; // use this for the axis labels and/or legend labels.
TTree *mPart1;
TTree *mPart2[2], *mPart3[2]; // pointers to TTrees of the various parts
TBranch *mPhotonBranch[2]; // Used branches
TClonesArray *mPhotonArray[2]; // To point to the array in the tree
for example

How to fix warning CA2226 in a C++/CLI application?

I have a C++/CLI class definition where I'm trying to get Equality testing to be Value based rahter than Reference (similar to the behavior of String). The following definitions work:
namespace MyCode
{
public ref class MyClass
{
public:
MyClass();
bool operator==(MyClass^ obj) { return Equals(obj); }
bool operator!=(MyClass^ obj) { return !Equals(obj); }
virtual bool Equals(MyClass^ obj);
virtual bool Equals(System::Object^ obj) override;
virtual int GetHashCode() override;
};
}
However, my company is now requiring (and rightly so) that all code needs to conform to the Code Analysis rules. Code analysis consistently reports two warnings on the above class:
CA2226 : Microsoft.Usage : Since ''MyClass'' redefines operator '==', it should also redefine operator '!='.
CA2226 : Microsoft.Usage : Since ''MyClass'' redefines operator '!=', it should also redefine operator '=='.
The Microsoft documentation on warning CA2226 makes it clear that this is an important warning and should not be suppressed - but what else can I do?
I'm looking for a way (if possible) to 'fix' the code in order to remove this warning. Is that possible, or do I just need to suppress it?
For a ref class, you're supposed to implement operator==(MyClass^ left, MyClass^ right) as a static member function, this is the one other .NET languages will find.
Your current implementation defines operator==(MyClass%, MyClass^ right) instead, which is unusual.
Note that you can't rely on left != nullptr, you need to test ReferenceEquals(left, nullptr).
This is a .NET implementation detail. Having instance operator overloads is a C++ feature, the code analyzer chokes on it. The .NET way is to have operator overloads as static functions. Notably C# requires this. Solve your problem similar to this:
static bool operator==(MyClass^ lhs, MyClass^ rhs) { return lhs->Equals(rhs); }
static bool operator!=(MyClass^ lhs, MyClass^ rhs) { return !lhs->Equals(rhs); }