Index to get row count of read-only (immutable) PostgreSQL table? - sql

I have a script that runs several times a day, which records the row counts of several PostgreSQL tables.
Some of the tables though are read-only and never change. (No rows are added or removed, nor are any values changed.)
Is there a way I could quickly get the row count from PostgreSQL? Eg. Could I create an index on select count(*) from some_table;?
I'd prefer not to cache this in the script. If I were to cache in the script, I haven't found a reliably way to determine if a table has been changed since the last time the script has run.

Unfortunately, in postgresql SELECT COUNT(*) is often slower than mysql to which it often get's compared to.
You can use the following query as an alternative to SELECT COUNT(*).
SELECT reltuples FROM pg_class WHERE relname = 'mytable';
This is not always 100% upto date but for immutable tables it will be accurate every time. And instant. For very large tables the percentage error will be very small and thus well worth the massive saving in time.
If it does matter and the table does not contain nulls, you can use
SELECT COUNT(primary_key_column) FROM table
and this will be significantly faster than SELECT COUNT(*)

Related

reduce the amount of data scanned by Athena when using aggregate functions

The below query scans 100 mb of data.
select * from table where column1 = 'val' and partition_id = '20190309';
However the below query scans 15 GB of data (there are over 90 partitions)
select * from table where column1 = 'val' and partition_id in (select max(partition_id) from table);
How can I optimize the second query to scan the same amount of data as the first?
There are two problems here. The efficiency of the the scalar subquery above select max(partition_id) from table, and the one #PiotrFindeisen pointed out around dynamic filtering.
The the first problem is that queries over the partition keys of a Hive table are a lot more complex than they appear. Most folks would think that if you want the max value of a partition key, you can simply execute a query over the partition keys, but that doesn't work because Hive allows partitions to be empty (and it also allows non-empty files that contain no rows). Specifically, the scalar subquery above select max(partition_id) from table requires Trino (formerly PrestoSQL) to find the max partition containing at least one row. The ideal solution would be to have perfect stats in Hive, but short of that the engine would need to have custom logic for hive that open files of the partitions until it found a non empty one.
If you are are sure that your warehouse does not contain empty partitions (or if you are ok with the implications of that), you can replace the scalar sub query with one over the hidden $partitions table"
select *
from table
where column1 = 'val' and
partition_id = (select max(partition_id) from "table$partitions");
The second problem is the one #PiotrFindeisen pointed out, and has to do with the way that queries are planned an executed. Most people would look at the above query, see that the engine should obviously figure out the value of select max(partition_id) from "table$partitions" during planning, inline that into the plan, and then continue with optimization. Unfortunately, that is a pretty complex decision to make generically, so the engine instead simply models this as a broadcast join, where one part of the execution figures out that value, and broadcasts the value to the rest of the workers. The problem is the rest of the execution has no way to add this new information into the existing processing, so it simply scans all of the data and then filters out the values you are trying to skip. There is a project in progress to add this dynamic filtering, but it is not complete yet.
This means the best you can do today, is to run two separate queries: one to get the max partition_id and a second one with the inlined value.
BTW, the hidden "$partitions" table was added in Presto 0.199, and we fixed some minor bugs in 0.201. I'm not sure which version Athena is based on, but I believe it is is pretty far out of date (the current release at the time I'm writing this answer is 309.
EDIT: Presto removed the __internal_partitions__ table in their 0.193 release so I'd suggest not using the solution defined in the Slow aggregation queries for partition keys section below in any production systems since Athena 'transparently' updates presto versions. I ended up just going with the naive SELECT max(partition_date) ... query but also using the same lookback trick outlined in the Lack of Dynamic Filtering section. It's about 3x slower than using the __internal_partitions__ table, but at least it won't break when Athena decides to update their presto version.
----- Original Post -----
So I've come up with a fairly hacky way to accomplish this for date-based partitions on large datasets for when you only need to look back over a few partitions'-worth of data for a match on the max, however, please note that I'm not 100% sure how brittle the usage of the information_schema.__internal_partitions__ table is.
As #Dain noted above, there are really two issues. The first being how slow an aggregation of the max(partition_date) query is, and the second being Presto's lack of support for dynamic filtering.
Slow aggregation queries for partition keys
To solve the first issue, I'm using the information_schema.__internal_partitions__ table which allows me to get quick aggregations on the partitions of a table without scanning the data inside the files. (Note that partition_value, partition_key, and partition_number in the below queries are all column names of the __internal_partitions__ table and not related to your table's columns)
If you only have a single partition key for your table, you can do something like:
SELECT max(partition_value) FROM information_schema.__internal_partitions__
WHERE table_schema = 'DATABASE_NAME' AND table_name = 'TABLE_NAME'
But if you have multiple partition keys, you'll need something more like this:
SELECT max(partition_date) as latest_partition_date from (
SELECT max(case when partition_key = 'partition_date' then partition_value end) as partition_date, max(case when partition_key = 'another_partition_key' then partition_value end) as another_partition_key
FROM information_schema.__internal_partitions__
WHERE table_schema = 'DATABASE_NAME' AND table_name = 'TABLE_NAME'
GROUP BY partition_number
)
WHERE
-- ... Filter down by values for e.g. another_partition_key
)
These queries should run fairly quickly (mine run in about 1-2 seconds) without scanning through the actual data in the files, but again, I'm not sure if there are any gotchas with using this approach.
Lack of Dynamic Filtering
I'm able to mitigate the worst effects of the second problem for my specific use-case because I expect there to always be a partition within a finite amount of time back from the current date (e.g. I can guarantee any data-production or partition-loading issues will be remedied within 3 days). It turns out that Athena does do some pre-processing when using presto's datetime functions, so this does not have the same types of issues with Dynamic Filtering as using a sub-query.
So you can change your query to limit how far it will look back for the actual max using the datetime functions so that the amount of data scanned will be limited.
SELECT * FROM "DATABASE_NAME"."TABLE_NAME"
WHERE partition_date >= cast(date '2019-06-25' - interval '3' day as varchar) -- Will only scan partitions from 3 days before '2019-06-25'
AND partition_date = (
-- Insert the partition aggregation query from above here
)
I don't know if it is still relevant, but just found out:
Instead of:
select * from table where column1 = 'val' and partition_id in (select max(partition_id) from table);
Use:
select a.* from table a
inner join (select max(partition_id) max_id from table) b on a.partition_id=b.max_id
where column1 = 'val';
I think it has something to do with optimizations of joins to use partitions.

how to speed up a clustered index scan while selecting all fields on range of rows or all the rows

I have a table
Books(BookId, Name, ...... , PublishedYear)
I do have about 30 fields in my Books table, where BookId is the primary key (Identity column). I have about 2 million records for this table.
I know select * is evil performance killer..
I have a situation to select range of rows or all the rows having all the columns in it.
Select * from Books;
this query takes more than 2 seconds to scan through the data page and get all the records. On checking the execution it still uses the Clustered index scan.
Obviously 2 seconds my not be that bad, however when this table has to be joined with other tables which is executed in batch is taking time over 15 minutes (There are no duplicate records though on the final result at completion as the count is matching). The join criteria is pretty simple and yields no duplication.
Excluding this table alone has the batch execution completed in sub seconds.
Is there a way to optimize this having said that I will have to select all the columns :(
Thanks in advance.
I've just run a batch against my developer instance, one SELECT specifying all Columns and one using *. There is no evidence (nor should there) that there is any difference aside from the raw parsing of my input. If I remember correctly, that old saying really means: Do not SELECT columns you are not using, they use up resources without benefit.
When you try to improve performance in your code, always check your assumptions, they might only apply to some older version (of sql server etc) or other method.

Tracking row numbers in Oracle

Is there a way I could keep track of modified tables in Oracle?
Is there a master table that keeps track of all other table's row? For example if I add a row to table1 it would update the row count stating that table1 now has 5 rows.
I was thinking of tracking either dba_tables or all_tables or user_tables but I'm not sure which one actually counts the number of rows each table has.
You can get an improvement on the just querying user/all/dba_statistics by combining them with information gathered by table monitoring.
The views DBA/ALL/USER_TAB_MODIFICATIONS are populated with the number on insets, updates, deletes and truncates on the table since statistics were last gathered. The view is populated asynchronously so call DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO to flush the latest in-memory data to the tables.
Bear in mind that statistics themselves may be estimated, and although the accuracy is pretty good on most tables even to surprisingly low levels of estimation percent (even down to 5% or below), if you need accurate numbers you'll have to query the tables themselves with count(*). You can put together a pipelined function to do this for multiple tables with a single query.
SELECT TABLE_NAME, NUM_ROWS
FROM USER_TABLES
I highly doubt you're actually using Oracle 3.1. This query works at least in 11g (I don't have other instances to test at the moment).
Keep in mind that this is a data dictionary table and it won't update automatically after you insert a row in any schema table. The Gather Statistics procedure must be run to update these records.
The only difference among dba|user|all_tables is scope. user_tables limit the output to the tables you own, all_tables is basically user_tables + tables from other schemas you've been granted access to, and dba_tables is everything that exists in the database.
num_rows is a valid option to track amount of number of rows in a table. unfortunately, it is not calculated real-time, but as a part of table statistics collection operation. There is no out of the box option of tracking amount of rows in real-time I am aware of.

Fast way to discover the row count of a table in PostgreSQL

I need to know the number of rows in a table to calculate a percentage. If the total count is greater than some predefined constant, I will use the constant value. Otherwise, I will use the actual number of rows.
I can use SELECT count(*) FROM table. But if my constant value is 500,000 and I have 5,000,000,000 rows in my table, counting all rows will waste a lot of time.
Is it possible to stop counting as soon as my constant value is surpassed?
I need the exact number of rows only as long as it's below the given limit. Otherwise, if the count is above the limit, I use the limit value instead and want the answer as fast as possible.
Something like this:
SELECT text,count(*), percentual_calculus()
FROM token
GROUP BY text
ORDER BY count DESC;
Counting rows in big tables is known to be slow in PostgreSQL. The MVCC model requires a full count of live rows for a precise number. There are workarounds to speed this up dramatically if the count does not have to be exact like it seems to be in your case.
(Remember that even an "exact" count is potentially dead on arrival under concurrent write load.)
Exact count
Slow for big tables.
With concurrent write operations, it may be outdated the moment you get it.
SELECT count(*) AS exact_count FROM myschema.mytable;
Estimate
Extremely fast:
SELECT reltuples AS estimate FROM pg_class where relname = 'mytable';
Typically, the estimate is very close. How close, depends on whether ANALYZE or VACUUM are run enough - where "enough" is defined by the level of write activity to your table.
Safer estimate
The above ignores the possibility of multiple tables with the same name in one database - in different schemas. To account for that:
SELECT c.reltuples::bigint AS estimate
FROM pg_class c
JOIN pg_namespace n ON n.oid = c.relnamespace
WHERE c.relname = 'mytable'
AND n.nspname = 'myschema';
The cast to bigint formats the real number nicely, especially for big counts.
Better estimate
SELECT reltuples::bigint AS estimate
FROM pg_class
WHERE oid = 'myschema.mytable'::regclass;
Faster, simpler, safer, more elegant. See the manual on Object Identifier Types.
Replace 'myschema.mytable'::regclass with to_regclass('myschema.mytable') in Postgres 9.4+ to get nothing instead of an exception for invalid table names. See:
How to check if a table exists in a given schema
Better estimate yet (for very little added cost)
This does not work for partitioned tables because relpages is always -1 for the parent table (while reltuples contains an actual estimate covering all partitions) - tested in Postgres 14.
You have to add up estimates for all partitions instead.
We can do what the Postgres planner does. Quoting the Row Estimation Examples in the manual:
These numbers are current as of the last VACUUM or ANALYZE on the
table. The planner then fetches the actual current number of pages in
the table (this is a cheap operation, not requiring a table scan). If
that is different from relpages then reltuples is scaled
accordingly to arrive at a current number-of-rows estimate.
Postgres uses estimate_rel_size defined in src/backend/utils/adt/plancat.c, which also covers the corner case of no data in pg_class because the relation was never vacuumed. We can do something similar in SQL:
Minimal form
SELECT (reltuples / relpages * (pg_relation_size(oid) / 8192))::bigint
FROM pg_class
WHERE oid = 'mytable'::regclass; -- your table here
Safe and explicit
SELECT (CASE WHEN c.reltuples < 0 THEN NULL -- never vacuumed
WHEN c.relpages = 0 THEN float8 '0' -- empty table
ELSE c.reltuples / c.relpages END
* (pg_catalog.pg_relation_size(c.oid)
/ pg_catalog.current_setting('block_size')::int)
)::bigint
FROM pg_catalog.pg_class c
WHERE c.oid = 'myschema.mytable'::regclass; -- schema-qualified table here
Doesn't break with empty tables and tables that have never seen VACUUM or ANALYZE. The manual on pg_class:
If the table has never yet been vacuumed or analyzed, reltuples contains -1 indicating that the row count is unknown.
If this query returns NULL, run ANALYZE or VACUUM for the table and repeat. (Alternatively, you could estimate row width based on column types like Postgres does, but that's tedious and error-prone.)
If this query returns 0, the table seems to be empty. But I would ANALYZE to make sure. (And maybe check your autovacuum settings.)
Typically, block_size is 8192. current_setting('block_size')::int covers rare exceptions.
Table and schema qualifications make it immune to any search_path and scope.
Either way, the query consistently takes < 0.1 ms for me.
More Web resources:
The Postgres Wiki FAQ
The Postgres wiki pages for count estimates and count(*) performance
TABLESAMPLE SYSTEM (n) in Postgres 9.5+
SELECT 100 * count(*) AS estimate FROM mytable TABLESAMPLE SYSTEM (1);
Like #a_horse commented, the added clause for the SELECT command can be useful if statistics in pg_class are not current enough for some reason. For example:
No autovacuum running.
Immediately after a large INSERT / UPDATE / DELETE.
TEMPORARY tables (which are not covered by autovacuum).
This only looks at a random n % (1 in the example) selection of blocks and counts rows in it. A bigger sample increases the cost and reduces the error, your pick. Accuracy depends on more factors:
Distribution of row size. If a given block happens to hold wider than usual rows, the count is lower than usual etc.
Dead tuples or a FILLFACTOR occupy space per block. If unevenly distributed across the table, the estimate may be off.
General rounding errors.
Typically, the estimate from pg_class will be faster and more accurate.
Answer to actual question
First, I need to know the number of rows in that table, if the total
count is greater than some predefined constant,
And whether it ...
... is possible at the moment the count pass my constant value, it will
stop the counting (and not wait to finish the counting to inform the
row count is greater).
Yes. You can use a subquery with LIMIT:
SELECT count(*) FROM (SELECT 1 FROM token LIMIT 500000) t;
Postgres actually stops counting beyond the given limit, you get an exact and current count for up to n rows (500000 in the example), and n otherwise. Not nearly as fast as the estimate in pg_class, though.
I did this once in a postgres app by running:
EXPLAIN SELECT * FROM foo;
Then examining the output with a regex, or similar logic. For a simple SELECT *, the first line of output should look something like this:
Seq Scan on uids (cost=0.00..1.21 rows=8 width=75)
You can use the rows=(\d+) value as a rough estimate of the number of rows that would be returned, then only do the actual SELECT COUNT(*) if the estimate is, say, less than 1.5x your threshold (or whatever number you deem makes sense for your application).
Depending on the complexity of your query, this number may become less and less accurate. In fact, in my application, as we added joins and complex conditions, it became so inaccurate it was completely worthless, even to know how within a power of 100 how many rows we'd have returned, so we had to abandon that strategy.
But if your query is simple enough that Pg can predict within some reasonable margin of error how many rows it will return, it may work for you.
Reference taken from this Blog.
You can use below to query to find row count.
Using pg_class:
SELECT reltuples::bigint AS EstimatedCount
FROM pg_class
WHERE oid = 'public.TableName'::regclass;
Using pg_stat_user_tables:
SELECT
schemaname
,relname
,n_live_tup AS EstimatedCount
FROM pg_stat_user_tables
ORDER BY n_live_tup DESC;
How wide is the text column?
With a GROUP BY there's not much you can do to avoid a data scan (at least an index scan).
I'd recommend:
If possible, changing the schema to remove duplication of text data. This way the count will happen on a narrow foreign key field in the 'many' table.
Alternatively, creating a generated column with a HASH of the text, then GROUP BY the hash column.
Again, this is to decrease the workload (scan through a narrow column index)
Edit:
Your original question did not quite match your edit. I'm not sure if you're aware that the COUNT, when used with a GROUP BY, will return the count of items per group and not the count of items in the entire table.
You can also just SELECT MAX(id) FROM <table_name>; change id to whatever the PK of the table is
In Oracle, you could use rownum to limit the number of rows returned. I am guessing similar construct exists in other SQLs as well. So, for the example you gave, you could limit the number of rows returned to 500001 and apply a count(*) then:
SELECT (case when cnt > 500000 then 500000 else cnt end) myCnt
FROM (SELECT count(*) cnt FROM table WHERE rownum<=500001)
For SQL Server (2005 or above) a quick and reliable method is:
SELECT SUM (row_count)
FROM sys.dm_db_partition_stats
WHERE object_id=OBJECT_ID('MyTableName')
AND (index_id=0 or index_id=1);
Details about sys.dm_db_partition_stats are explained in MSDN
The query adds rows from all parts of a (possibly) partitioned table.
index_id=0 is an unordered table (Heap) and index_id=1 is an ordered table (clustered index)
Even faster (but unreliable) methods are detailed here.

What is the most efficient way to count rows in a table in SQLite?

I've always just used "SELECT COUNT(1) FROM X" but perhaps this is not the most efficient. Any thoughts? Other options include SELECT COUNT(*) or perhaps getting the last inserted id if it is auto-incremented (and never deleted).
How about if I just want to know if there is anything in the table at all? (e.g., count > 0?)
The best way is to make sure that you run SELECT COUNT on a single column (SELECT COUNT(*) is slower) - but SELECT COUNT will always be the fastest way to get a count of things (the database optimizes the query internally).
If you check out the comments below, you can see arguments for why SELECT COUNT(1) is probably your best option.
To follow up on girasquid's answer, as a data point, I have a sqlite table with 2.3 million rows. Using select count(*) from table, it took over 3 seconds to count the rows. I also tried using SELECT rowid FROM table, (thinking that rowid is a default primary indexed key) but that was no faster. Then I made an index on one of the fields in the database (just an arbitrary field, but I chose an integer field because I knew from past experience that indexes on short fields can be very fast, I think because the index is stored a copy of the value in the index itself). SELECT my_short_field FROM table brought the time down to less than a second.
If you are sure (really sure) that you've never deleted any row from that table and your table has not been defined with the WITHOUT ROWID optimization you can have the number of rows by calling:
select max(RowId) from table;
Or if your table is a circular queue you could use something like
select MaxRowId - MinRowId + 1 from
(select max(RowId) as MaxRowId from table) JOIN
(select min(RowId) as MinRowId from table);
This is really really fast (milliseconds), but you must pay attention because sqlite says that row id is unique among all rows in the same table. SQLite does not declare that the row ids are and will be always consecutive numbers.
The fastest way to get row counts is directly from the table metadata, if any. Unfortunately, I can't find a reference for this kind of data being available in SQLite.
Failing that, any query of the type
SELECT COUNT(non-NULL constant value) FROM table
should optimize to avoid the need for a table, or even an index, scan. Ideally the engine will simply return the current number of rows known to be in the table from internal metadata. Failing that, it simply needs to know the number of entries in the index of any non-NULL column (the primary key index being the first place to look).
As soon as you introduce a column into the SELECT COUNT you are asking the engine to perform at least an index scan and possibly a table scan, and that will be slower.
I do not believe you will find a special method for this. However, you could do your select count on the primary key to be a little bit faster.
sp_spaceused 'table_name' (exclude single quote)
this will return the number of rows in the above table, this is the most efficient way i have come across yet.
it's more efficient than select Count(1) from 'table_name' (exclude single quote)
sp_spaceused can be used for any table, it's very helpful when the table is exceptionally big (hundreds of millions of rows), returns number of rows right a way, whereas 'select Count(1)' might take more than 10 seconds. Moreover, it does not need any column names/key field to consider.