Constraining a function argument in an interface - idris

What is the syntax to constrain a function argument in an interface which takes a function? I tried:
interface Num a => Color (f : a -> Type) where
defs...
But it says the Name a is not bound in interface...

Your interface actually has two parameters: a and f. But f should be enough to pick an implementation:
interface Num a => Color (a : Type) (f : a -> Type) | f where
f here is called a determining parameter.
Here's a nonsensical full example:
import Data.Fin
interface Num a => Color (a : Type) (f : a -> Type) | f where
foo : (x : a) -> f (1 + x)
Color Nat Fin where
foo _ = FZ
x : Fin 6
x = foo {f = Fin} 5

Related

How to deal with "Error: Multiple solutions found"?

I'm trying to build a set datatype.
mutual
data Set : Type -> Type where
Nil : Eq a => Set a
(::) : Eq a => (x : a) -> (s : Set a) -> {auto _ : contains x s = False} -> Set a
contains : Eq a => a -> Set a -> Bool
contains x [] = False
contains x (y :: s) = (x == y) || contains x s
But I have no idea how to deal with this error:
Error: While processing right hand side of contains. Multiple solutions found in search of:
Eq a
test:9:26--9:32
5 | (::) : Eq a => (x : a) -> (s : Set a) -> {auto _ : contains x s = False} -> Set a
6 |
7 | contains : Eq a => a -> Set a -> Bool
8 | contains x [] = False
9 | contains x (y :: s) = (x == y) || contains x s
^^^^^^
Possible correct results:
conArg (implicitly bound at test:9:3--9:49)
conArg (implicitly bound at test:9:3--9:49)
You have multiple instances of Eq a floating around (one for each set element), so Idris isn't sure which one to use. For example, in contains, there's one from contains : Eq a => and another less obvious one from (y :: s). You can disambiguate with
contains : Eq a => a -> Set a -> Bool
contains x [] = False
contains #{eq} x (y :: s) = ((==) #{eq} x y) || contains #{eq} x s
though it may be better to work out some refactor that doesn't have multiple Eq a, if that's possible.

Using type synonyms in interface implementations

Given two interfaces:
interface Poset a (po : a -> a -> Type) where
reflexive : (x : a) -> x `po` x
interface JoinSemilattice a where
join : a -> a -> a
joinAssociative : (x, y, z : a) -> x `join` (y `join` z) = (x `join` y) `join` z
I wish to make an implementation of the first interface given the second interface using the following type synonym:
LTE : JoinSemilattice a => a -> a -> Type
LTE x y = (x `join` y = y)
Doing the following:
implementation JoinSemilattice a => Poset a LTE where
...
However the idris compiler gives the following error:
LTE cannot be a parameter of Algebra.Lattice.Poset
(Implementation arguments must be type or data constructors)
It seems to me that the compiler is not capable of seeing that the type synonym in fact is a type constructor.
Is there any way to work around this?
Yes, according to Idris issue #3727, this appears to be a deliberate restriction on interface implementations. As for a workaround, the following approach is less direct but it works:
interface Poset a (po : a -> a -> Type) where
reflexive : (x : a) -> x `po` x
interface JoinSemilattice a where
join : a -> a -> a
selfJoin : (x : a) -> x `join` x = x
data LTE : a -> a -> Type where
CheckLTE : JoinSemilattice a => {x,y : a} -> x `join` y = y -> LTE x y
implementation JoinSemilattice a => Poset a LTE where
reflexive x = CheckLTE (selfJoin x)

Idris: proof that specific terms are impossible

Idris version: 0.9.16
I am attempting to describe constructions generated from a base value and an iterated step function:
namespace Iterate
data Iterate : (base : a) -> (step : a -> a) -> a -> Type where
IBase : Iterate base step base
IStep : Iterate base step v -> Iterate base step (step v)
Using this I can define Plus, describing constructs from iterated addition of a jump value:
namespace Plus
Plus : (base : Nat) -> (jump : Nat) -> Nat -> Type
Plus base jump = Iterate base (\v => jump + v)
Simple example uses of this:
namespace PlusExamples
Even : Nat -> Type; Even = Plus 0 2
even0 : Even 0; even0 = IBase
even2 : Even 2; even2 = IStep even0
even4 : Even 4; even4 = IStep even2
Odd : Nat -> Type; Odd = Plus 1 2
odd1 : Odd 1; odd1 = IBase
odd3 : Odd 3; odd3 = IStep odd1
Fizz : Nat -> Type; Fizz = Plus 0 3
fizz0 : Fizz 0; fizz0 = IBase
fizz3 : Fizz 3; fizz3 = IStep fizz0
fizz6 : Fizz 6; fizz6 = IStep fizz3
Buzz : Nat -> Type; Buzz = Plus 0 5
buzz0 : Buzz 0; buzz0 = IBase
buzz5 : Buzz 5; buzz5 = IStep buzz0
buzz10 : Buzz 10; buzz10 = IStep buzz5
The following describes that values below the base are impossible:
noLess : (base : Nat) ->
(i : Fin base) ->
Plus base jump (finToNat i) ->
Void
noLess Z FZ m impossible
noLess (S b) FZ IBase impossible
noLess (S b) (FS i) IBase impossible
And the following for values between base and jump + base:
noBetween : (base : Nat) ->
(predJump : Nat) ->
(i : Fin predJump) ->
Plus base (S predJump) (base + S (finToNat i)) ->
Void
noBetween b Z FZ m impossible
noBetween b (S s) FZ IBase impossible
noBetween b (S s) (FS i) IBase impossible
I am having trouble defining the following function:
noJump : (Plus base jump n -> Void) -> Plus base jump (jump + n) -> Void
noJump f m = ?noJump_rhs
That is: if n isn't base plus a natural multiple of jump, then neither is jump + n.
If I ask Idris to case split m it only shows me IBase - then I get stuck.
Would someone point me in the right direction?
Edit 0:
Applying induction to m gives me the following message:
Induction needs an eliminator for Iterate.Iterate.Iterate
Edit 1:
Name updates and here is a copy of the source: http://lpaste.net/125873
I think there's a good reason to get stuck on the IBase case of this proof, which is that the theorem is false! Consider:
noplus532 : Plus 5 3 2 -> Void
noplus532 IBase impossible
noplus532 (IStep _) impossible
plus535 : Plus 5 3 (3 + 2)
plus535 = IBase
To Edit 0: to induct on a type, it needs a special qualifier:
%elim data Iterate = <your definition>
To the main question: sorry that I haven't read through all your code, I only want to make some suggestion for falsifying proofs. From my experience (I even delved the standard library sources to find out some help), when you need to prove Not a (a -> Void), often you can use some Not b (b -> Void) and a way to convert a to b, then just pass it to the second proof. For example, a very simple proof that one list cannot be prefix of another if they have different heads:
%elim data Prefix : List a -> List a -> Type where
pEmpty : Prefix Nil ys
pNext : Prefix xs ys -> Prefix (x :: xs) (x :: ys)
prefixNotCons : Not (x = y) -> Not (Prefix (x :: xs) (y :: ys))
prefixNotCons r (pNext _) = r refl
In your case, I suppose you need to combine several proofs.

Doing rank-n quantification in Idris

I can only do rank-n types in Idris 0.9.12 in a rather clumsy way:
tupleId : ((a : Type) -> a -> a) -> (a, b) -> (a, b)
tupleId f (a, b) = (f _ a, f _ b)
I need the underscores wherever there's a type application, because Idris throws parse errors when I try to make the (nested) type arguments implicit:
tupleId : ({a : Type} -> a -> a) -> (a, b) -> (a, b) -- doesn't compile
A probably bigger issue is that I can't do class constraints in higher-rank types at all. I can't translate the following Haskell function to Idris:
appShow :: Show a => (forall a. Show a => a -> String) -> a -> String
appShow show x = show x
This also prevents me from using Idris functions as type synonyms for types such as Lens, which is Lens s t a b = forall f. Functor f => (a -> f b) -> s -> f t in Haskell.
Any way to remedy or circumvent the above issues?
I've just implemented this in master, allowing implicits in arbitrary scopes, and it'll be in the next hackage release. It's not well tested yet though! I have at least tried the following simple examples, and a few others:
appShow : Show a => ({b : _} -> Show b => b -> String) -> a -> String
appShow s x = s x
AppendType : Type
AppendType = {a, n, m : _} -> Vect n a -> Vect m a -> Vect (n + m) a
append : AppendType
append [] ys = ys
append (x :: xs) ys = x :: append xs ys
tupleId : ({a : _} -> a -> a) -> (a, b) -> (a, b)
tupleId f (a, b) = (f a, f b)
Proxy : Type -> Type -> Type -> Type -> (Type -> Type) -> Type -> Type
Producer' : Type -> (Type -> Type) -> Type -> Type
Producer' a m t = {x', x : _} -> Proxy x' x () a m t
yield : Monad m => a -> Producer' a m ()
The main constraint at the minute is that you can't give values for implicit arguments directly, except at the top level. I'll do something about that eventually...

How would I translate a Haskell type class into F#?

I'm trying to translate the Haskell core library's Arrows into F# (I think it's a good exercise to understanding Arrows and F# better, and I might be able to use them in a project I'm working on.) However, a direct translation isn't possible due to the difference in paradigms. Haskell uses type-classes to express this stuff, but I'm not sure what F# constructs best map the functionality of type-classes with the idioms of F#. I have a few thoughts, but figured it best to bring it up here and see what was considered to be the closest in functionality.
For the tl;dr crowd: How do I translate type-classes (a Haskell idiom) into F# idiomatic code?
For those accepting of my long explanation:
This code from the Haskell standard lib is an example of what I'm trying to translate:
class Category cat where
id :: cat a a
comp :: cat a b -> cat b c -> cat a c
class Category a => Arrow a where
arr :: (b -> c) -> a b c
first :: a b c -> a (b,d) (c,d)
instance Category (->) where
id f = f
instance Arrow (->) where
arr f = f
first f = f *** id
Attempt 1: Modules, Simple Types, Let Bindings
My first shot at this was to simply map things over directly using Modules for organization, like:
type Arrow<'a,'b> = Arrow of ('a -> 'b)
let arr f = Arrow f
let first f = //some code that does the first op
That works, but it loses out on polymorphism, since I don't implement Categories and can't easily implement more specialized Arrows.
Attempt 1a: Refining using Signatures and types
One way to correct some issues with Attempt 1 is to use a .fsi file to define the methods (so the types enforce easier) and to use some simple type tweaks to specialize.
type ListArrow<'a,'b> = Arrow<['a],['b]>
//or
type ListArrow<'a,'b> = LA of Arrow<['a],['b]>
But the fsi file can't be reused (to enforce the types of the let bound functions) for other implementations, and the type renaming/encapsulating stuff is tricky.
Attempt 2: Object models and interfaces
Rationalizing that F# is built to be OO also, maybe a type hierarchy is the right way to do this.
type IArrow<'a,'b> =
abstract member comp : IArrow<'b,'c> -> IArrow<'a,'c>
type Arrow<'a,'b>(func:'a->'b) =
interface IArrow<'a,'b> with
member this.comp = //fun code involving "Arrow (fun x-> workOn x) :> IArrow"
Aside from how much of a pain it can be to get what should be static methods (like comp and other operators) to act like instance methods, there's also the need to explicitly upcast the results. I'm also not sure that this methodology is still capturing the full expressiveness of type-class polymorphism. It also makes it hard to use things that MUST be static methods.
Attempt 2a: Refining using type extensions
So one more potential refinement is to declare the interfaces as bare as possible, then use extension methods to add functionality to all implementing types.
type IArrow<'a,'b> with
static member (&&&) f = //code to do the fanout operation
Ah, but this locks me into using one method for all types of IArrow. If I wanted a slightly different (&&&) for ListArrows, what can I do? I haven't tried this method yet, but I would guess I can shadow the (&&&), or at least provide a more specialized version, but I feel like I can't enforce the use of the correct variant.
Help me
So what am I supposed to do here? I feel like OO should be powerful enough to replace type-classes, but I can't seem to figure out how to make that happen in F#. Were any of my attempts close? Are any of them "as good as it gets" and that'll have to be good enough?
My brief answer is:
OO is not powerful enough to replace type classes.
The most straightforward translation is to pass a dictionary of operations, as in one typical typeclass implementation. That is if typeclass Foo defines three methods, then define a class/record type named Foo, and then change functions of
Foo a => yadda -> yadda -> yadda
to functions like
Foo -> yadda -> yadda -> yadda
and at each call site you know the concrete 'instance' to pass based on the type at the call-site.
Here's a short example of what I mean:
// typeclass
type Showable<'a> = { show : 'a -> unit; showPretty : 'a -> unit } //'
// instances
let IntShowable =
{ show = printfn "%d"; showPretty = (fun i -> printfn "pretty %d" i) }
let StringShowable =
{ show = printfn "%s"; showPretty = (fun s -> printfn "<<%s>>" s) }
// function using typeclass constraint
// Showable a => [a] -> ()
let ShowAllPretty (s:Showable<'a>) l = //'
l |> List.iter s.showPretty
// callsites
ShowAllPretty IntShowable [1;2;3]
ShowAllPretty StringShowable ["foo";"bar"]
See also
https://web.archive.org/web/20081017141728/http://blog.matthewdoig.com/?p=112
Here's the approach I use to simulate Typeclasses (from http://code.google.com/p/fsharp-typeclasses/ ).
In your case, for Arrows could be something like this:
let inline i2 (a:^a,b:^b ) =
((^a or ^b ) : (static member instance: ^a* ^b -> _) (a,b ))
let inline i3 (a:^a,b:^b,c:^c) =
((^a or ^b or ^c) : (static member instance: ^a* ^b* ^c -> _) (a,b,c))
type T = T with
static member inline instance (a:'a ) =
fun x -> i2(a , Unchecked.defaultof<'r>) x :'r
static member inline instance (a:'a, b:'b) =
fun x -> i3(a, b, Unchecked.defaultof<'r>) x :'r
type Return = Return with
static member instance (_Monad:Return, _:option<'a>) = fun x -> Some x
static member instance (_Monad:Return, _:list<'a> ) = fun x -> [x]
static member instance (_Monad:Return, _: 'r -> 'a ) = fun x _ -> x
let inline return' x = T.instance Return x
type Bind = Bind with
static member instance (_Monad:Bind, x:option<_>, _:option<'b>) = fun f ->
Option.bind f x
static member instance (_Monad:Bind, x:list<_> , _:list<'b> ) = fun f ->
List.collect f x
static member instance (_Monad:Bind, f:'r->'a, _:'r->'b) = fun k r -> k (f r) r
let inline (>>=) x (f:_->'R) : 'R = T.instance (Bind, x) f
let inline (>=>) f g x = f x >>= g
type Kleisli<'a, 'm> = Kleisli of ('a -> 'm)
let runKleisli (Kleisli f) = f
type Id = Id with
static member instance (_Category:Id, _: 'r -> 'r ) = fun () -> id
static member inline instance (_Category:Id, _:Kleisli<'a,'b>) = fun () ->
Kleisli return'
let inline id'() = T.instance Id ()
type Comp = Comp with
static member instance (_Category:Comp, f, _) = (<<) f
static member inline instance (_Category:Comp, Kleisli f, _) =
fun (Kleisli g) -> Kleisli (g >=> f)
let inline (<<<) f g = T.instance (Comp, f) g
let inline (>>>) g f = T.instance (Comp, f) g
type Arr = Arr with
static member instance (_Arrow:Arr, _: _ -> _) = fun (f:_->_) -> f
static member inline instance (_Arrow:Arr, _:Kleisli<_,_>) =
fun f -> Kleisli (return' <<< f)
let inline arr f = T.instance Arr f
type First = First with
static member instance (_Arrow:First, f, _: 'a -> 'b) =
fun () (x,y) -> (f x, y)
static member inline instance (_Arrow:First, Kleisli f, _:Kleisli<_,_>) =
fun () -> Kleisli (fun (b,d) -> f b >>= fun c -> return' (c,d))
let inline first f = T.instance (First, f) ()
let inline second f = let swap (x,y) = (y,x) in arr swap >>> first f >>> arr swap
let inline ( *** ) f g = first f >>> second g
let inline ( &&& ) f g = arr (fun b -> (b,b)) >>> f *** g
Usage:
> let f = Kleisli (fun y -> [y;y*2;y*3]) <<< Kleisli ( fun x -> [ x + 3 ; x * 2 ] ) ;;
val f : Kleisli<int,int list> = Kleisli <fun:f#4-14>
> runKleisli f <| 5 ;;
val it : int list = [8; 16; 24; 10; 20; 30]
> (arr (fun y -> [y;y*2;y*3])) 3 ;;
val it : int list = [3; 6; 9]
> let (x:option<_>) = runKleisli (arr (fun y -> [y;y*2;y*3])) 2 ;;
val x : int list option = Some [2; 4; 6]
> ( (*) 100) *** ((+) 9) <| (5,10) ;;
val it : int * int = (500, 19)
> ( (*) 100) &&& ((+) 9) <| 5 ;;
val it : int * int = (500, 14)
> let x:List<_> = (runKleisli (id'())) 5 ;;
val x : List<int> = [5]
Note: use id'() instead of id
Update: you need F# 3.0 to compile this code, otherwise here's the F# 2.0 version.
And here's a detailed explanation of this technique which is type-safe, extensible and as you can see works even with some Higher Kind Typeclasses.