Difference between Object Oriented Programming and Reactive Programming - oop

I have a fair amount of knowledge about Object Oriented Programming and have very little understanding of Reactive Programming.
Can anyone explain the difference between Object Oriented Programming and Reactive Programming?

In shorts, Object Oriented Programming(OOPs) is a type programming language(design) and reactive programming is a programming paradigm which deals with Asynchronous data flows.
Reactive programming is independent of language types(oops/function-based). Lets take an example:-
If you are calculating a sum of two numbers on remote server(rpc), then you have to send numbers to the server and call the sum method(procedure) and then server replies sum to you. Now you are happy and server is also happy. But wait, if you call another procedure which is summing a big file which is already on server, which might take few seconds(or may be minutes), so after calling that procedure your program will wait for response. Now you are impatient to execute other things also, so you will think I will better execute this part in other thread which will provide the sum whenever it arrive. This is what a reactive programming, you are handling data asynchronously.

Related

What is the difference between object oriented programming and procedural programming? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 2 years ago.
Improve this question
From what I can gather procedural programming uses procedures and functions or sub routines. It gives a step by step instruction on what to do. Though object oriented on the other hand im not entirely sure. All I have seen is that it uses "objects" and is pretty much the same? Could someone clarify and explain what exactly an object is?
Think of all programming as managing the relationship between two fundamental concepts: state and behavior. State is the data of your program. Behavior is the logic.
Procedural Programming is based on implementing these two concepts separately. State is held in data structures. Behavior is held in functions (also known as procedures or subroutines). A procedural application therefore passes data structures into functions to produce some output.
Object-Oriented Programming is based on implementing these two concepts together. State and Behavior are combined into one new concept: an Object. An OO application can therefore produce some output by calling an Object, without needing to pass data structures.
Advantages of OO include the potential for information hiding: if a caller needn't pass any data structure, then the caller needn't be aware of any data structure, and can therefore be completely decoupled from the data format.
One fundamental difference between the logic of procedures and the logic of objects is in the way selection is handled. Procedures handle selection using branching logic: the familiar if/else syntax. Objects prefer to handle selection using polymorphism.
There are similarities between Procedural and OO as well. Both represent an imperative style of programming, meaning they operate by mutating their state (whether inside a data structure or an object) and providing step-by-step instructions on how to compute output. Imperative programming is like writing a recipe.
Finally note that these are idealistic or "pure" definitions. In the real world, paradigms merge. You will rarely, if ever, see a pure OO application. Features from multiple paradigms will be combined, for better or worse.
The difference is that an object holds both state and functionality whereas a function does not hold state.
Consider an enemy in a game. That enemy may be able to do things (i.e.: functionality) such as moving and attacking. At the same time, that enemy also holds data such as its current health.
In procedural programming, you would have to keep passing in the enemy's state as parameters. Object oriented programming differs in that the state is passed to the function (now called a method) automatically.

Difference between OOP and Functional Programming (scheme) [closed]

It's difficult to tell what is being asked here. This question is ambiguous, vague, incomplete, overly broad, or rhetorical and cannot be reasonably answered in its current form. For help clarifying this question so that it can be reopened, visit the help center.
Closed 11 years ago.
I'm watching a video course/lectures from Stanford. The course is "The Structure and Interpretation of Computer Programs"
In the first OOP lecture, the instructor (Brian Harvey) describes an OOP method as one that gives different answers for the same question, while a function in functional programming gives a certain output for a certain input.
The following code is an example of a method in OOP that gives a different answer each time it's called:-
(define-class (counter)
instance-vars (count 0))
(method (next)
(set! count (+ count 1))
count) )
Now although the course is illustrated by scheme, I didn't pay much attention to the language itself, and so I can't explain the code; but can't a similar function "next" do the same thing as this "next" function?
In C, I would declare a global variable, and each time increase it by one when calling next. I know C is procedural, but I'm guessing a similar thing can be done in Scheme.
Well. With all due respect to the lecturer, these are slightly fishy definitions of both "OOP" and "functional programming". Both terms are consistently used, well, inconsistently, both in industry and academic contexts, not to mention informal use. If you dig a bit deeper, what's really going on is that there are several orthogonal concepts--different axes along which a choice is made in how to approach a program--that are being conflated, with one set of choices being arbitrarily called "OOP" despite not having anything else tying them together.
Probably the two biggest distinctions involved here are:
Identity vs. value: Do you model things by implicit identity (based on memory location or whatnot) and allow them to change arbitrarily? Or do you model things by their value, with no inherent notion of identity? If you say x = 4 does that mean that x is an alias to the timeless Platonic ideal of the number 4, or is x the name of a thing that's currently a four, but could be something else later (while still being x)?
Data vs. behavior: Do you work with simple data structures whose representation can be inspected, manipulated, and transformed? Or do you work with abstracted behaviors that do things, representing data only in terms of the things you can do with it, and let these behavioral abstractions operate on each other?
Most standard imperative languages lean toward using identity and data--pointers to C structs are about as purely this approach as possible. OOP languages tend to be defined largely by opting for behavior over data, often leaning toward identity as well but not consistently (cf. the popularity of "immutable" objects).
Functional programming usually leans more toward values rather than identity, while mixing data and behavior to various degrees.
There's a lot more going on here as well but I think that's the key part of what you're wondering here.
If anyone's curious I've elaborated a bit on some of this before: Analyzing some essential concepts of many OOP languages, more on the identity/value issue and also formal vs. informal approaches, a look at the data/behavior distinction in functional programming, probably others I can't think of. Warning, I'm kind of long-winded, these are not for the faint of heart. :P
There is a page on the excellent Haskell wiki, where differences in Functional Programming and OOP are contrasted. The Haskell wiki is a wonderful resource for everything about functional programming in general in addition to helping with the Haskell language.
Functional programming and OOP Differences
The important difference between pure functional programming and object-oriented programming is:
Object-oriented:
Data:
OOP asks What can I do with the data?
Producer: Class
Consumer: Class method
State:
The methods and objects in OOP have some internal state (method variables and object attributes) and they possibly have side effects affecting the state of computer’s peripherals, the global scope, or the state of an object or method. Variable assignment is one good sign of something having a state.
Functional:
Data:
Functional programming asks How the data is constructed?
Producer: Type Constructor
Consumer: Function
State:
If a pure functional programming ever assigns to a variable, the variable must be considered and handled as immutable. There must not be a state in pure functional programming.
Code with side effects is often separated from the main purely functional body of code
State can be passed around as an argument to a function, this is called a continuation.
Functional substitutes for OOP generators
The way to do something similar to OOP style generators (which have an internal state) with pure functional programming is to approach the problem from a different point of view, by using one of these solutions depending on the use case:
1. Process some or all values in a sequence:
Type of sequence can be list, array, sequence or vector.
Lisp has car and Haskell has first, which take first item from a list.
Haskell also has take, which takes the first n items, and which supports lazy evaluation and thus infinite or cyclic sequences – like OOP generators do.
Both have first, and different map, reduce or fold functions for processing sequences with a function.
Matrices usually also have some ways to map or apply a function to each item.
2. Some values from a function are needed:
The indices might be from a discrete or continuous scale (integers or floats).
Make one pure function to generate the indices (events) and feed those to another pure function (behaviour). This is called Functional reactive programming. This is a form of Dataflow programming along with cell-oriented programming. The Actor model is also somewhat similar in operation, and a very interesting alternative to threads with handling concurrency!
3. Use a closure to confine and encapsulate the state from the outside
This is the closest subsitute to OOP way with generators (which I think actually originated to imitate closures), and also farthest from pure functional programming, because a closure has a state.
"Functional" in functional programming has traditionally referred to the meaning of mathematical functions. That is, the output of a mathematical function is based solely on the inputs passed to it. Nowadays such programming is more often called pure functional programming.
In pure functional programming reassigning state is not allowed, thus writing a function such as your C example would not be possible. You are only allowed to bind a value to a variable once. An example of a language where this would not be possible is Haskell.
Most functional programming languages (Scheme included) are unpure and would allow you to do so. Said that, what the lecturer is telling is that writing such a function is not possible in the traditional sense of functional programming.
Well, yeah, you could do that in C.
But its not the same - in C++ you can make each object have its own count.

Object Oriented Programming beyond just methods?

I have a very limited understanding of OOP.
I've been programming in .Net for a year or so, but I'm completely self taught so some of the uses of the finer points of OOP are lost on me.
Encapsulation, inheritance, abstraction, etc. I know what they mean (superficially), but what are their uses?
I've only ever used OOP for putting reusable code into methods, but I know I am missing out on a lot of functionality.
Even classes -- I've only made an actual class two or three times. Rather, I typically just include all of my methods with the MainForm.
OOP is way too involved to explain in a StackOverflow answer, but the main thrust is as follows:
Procedural programming is about writing code that performs actions on data. Object-oriented programming is about creating data that performs actions on itself.
In procedural programming, you have functions and you have data. The data is structured but passive and you write functions that perform actions on the data and resources.
In object-oriented programming, data and resources are represented by objects that have properties and methods. Here, the data is no longer passive: method is a means of instructing the data or resource to perform some action on itself.
The reason that this distinction matters is that in procedural programming, any data can be inspected or modified in any arbitrary way by any part of the program. You have to watch out for unexpected interactions between different functions that touch the same data, and you have to modify a whole lot of code if you choose to change how the data is stored or organized.
But in object-oriented programming, when encapsulation is used properly, no code except that inside the object needs to know (and thus won't become dependent on) how the data object stores its properties or mutates itself. This helps greatly to modularize your code because each object now has a well-defined interface, and so long as it continues to support that interface and other objects and free functions use it through that interface, the internal workings can be modified without risk.
Additionally, the concepts of objects, along with the use of inheritance and composition, allow you to model your data structurally in your code. If you need to have data that represents an employee, you create an Employee class. If you need to work with a printer resource, you create a Printer class. If you need to draw pushbuttons on a dialog, you create a Button class. This way, not only do you achieve greater modularization, but your modules reflect a useful model of whatever real-world things your program is supposed to be working with.
You can try this: http://homepage.mac.com/s_lott/books/oodesign.html It might help you see how to design objects.
You must go though this I can't create a clear picture of implementing OOP concepts, though I understand most of the OOP concepts. Why?
I had same scenario and I too is a self taught. I followed those steps and now I started getting a knowledge of implementation of OOP. I make my code in a more modular way better structured.
OOP can be used to model things in the real world that your application deals with. For example, a video game will probably have classes for the player, the badguys, NPCs, weapons, ammo, etc... anything that the system wants to deal with as a distinct entity.
Some links I just found that are intros to OOD:
http://accu.informika.ru/acornsig/public/articles/ood_intro.html
http://www.fincher.org/tips/General/SoftwareEngineering/ObjectOrientedDesign.shtml
http://www.softwaredesign.com/objects.html
Keeping it very brief: instead of doing operations on data a bunch of different places, you ask the object to do its thing, without caring how it does it.
Polymorphism: different objects can do different things but give them the same name, so that you can just ask any object (of a particular supertype) to do its thing by asking any object of that type to do that named operation.
I learned OOP using Turbo Pascal and found it immediately useful when I tried to model physical objects. Typical examples include a Circle object with fields for location and radius and methods for drawing, checking if a point is inside or outside, and other actions. I guess, you start thinking of classes as objects, and methods as verbs and actions. Procedural programming is like writing a script. It is often linear and it follows step by step what needs to be done. In OOP world you build an available repetoire of actions and tasks (like lego pieces), and use them to do what you want to do.
Inheritance is used common code should/can be used on multiple objects. You can easily go the other way and create way too many classes for what you need. If I am dealing with shapes do I really need two different classes for rectangles and squares, or can I use a common class with different values (fields).
Mastery comes with experience and practice. Once you start scratching your head on how to solve particular problems (especially when it comes to making your code usable again in the future), slowly you will gain the confidence to start including more and more OOP features into your code.
Good luck.

The core of object oriented programming [closed]

It's difficult to tell what is being asked here. This question is ambiguous, vague, incomplete, overly broad, or rhetorical and cannot be reasonably answered in its current form. For help clarifying this question so that it can be reopened, visit the help center.
Closed 12 years ago.
I am trying to understand the core of object oriented programming for php or actionscript proect. As far as I understand, we will have a Main class that control different elements of the project. For example, photoslider class, music control class..etc. I created instance of those classes inside my Main class and use their method or property to control those objects.
I have studied many OOP articles but most of them only talks about inheritance, encapsulation...etc I am not sure if I am right about this and I would appreciate if someone can explain more about it. Thanks!
Same question , i was asking when i were just starting my career but i understood Object Orientation as i progress in my career.
but for very basic startng point in oop.
1- think about object just try to relate your daily household things like ( your laptop, your ipad, your Mobile, your pet)
Step 2-
Try to relate objects like ( Your TV an your remote ) this gives you the basic idea how object should relate to each other.
Step 3-
Try to visulize how things compose to create a full feature like your Body compose of (Heart, Lungs and many other organs)
Step 4-
Try to think about object lifetime ( Like as a example a car enigne is less useful outside Car , so if car is a object than this object must contain a engine and when actual car object destroys engine is also destroyed)
Step 5-
Try to learn about a polymorphism ( Like a ScrewDriver can take may shapes according to your need then map to your objects if your using c# than try to leran about ToString() method overriding)
Step 6 -
Try to create a real life boundry to your real life object ( Like your House ; You secure your house by various means )
this is the initial learning .. read as much as text as you find and try to learn by your own examples
in the last ; oop is an art first , try to visulize it.
my main suggestion is to look at the objects as "smart serfs": each one of these will have memory (the data members) and logic (the member functions).
In my experience, the biggest strength of OOP is the control that you have on the evolution of your design: if your software is remotely useful, it will change, and OOP gives you tools to make the change sustainable. In particular:
a class should change for only one reason, so it must be solve only one problem (SINGLE RESPONSABILITY PRINCIPLE)
changing the behaviour of a class should be made by extending it, not by modifying it (OPEN CLOSED PRINCIPLE)
Focus on interfaces, not on inheritance
Tell, don't ask! Give orders to your objects, do not use them as "data stores"
There are other principles, but I think that these are the ones that must be really understood to succeed in OOP.
I'm not sure I ever understood OOP until I started programming in Ruby but I think I have a reasonable grasp of it now.
It was once explained to me as the components of a car and that helped a lot...
There's such a thing as a Car (the class).
my_car and girlfriends_car are both instances of Car.
my_car has these things that exist called Tyres.
my_car has four instances of Tyres - tyre1, tyre2, tyre3, tyre4
So I have two classes - Car, Tyre
and I have multiple instances of each class.
The Car class has an attribute called Car.colour.
my_car.colour is blue
girlfriends_car is pink
The sticking point for me was understanding the difference between class methods and instance methods.
Instance Methods
An instance method is something like my_car.paint_green. It wouldn't make any sense to call Car.paint_green. Paint what car green? Nope. It has to be girlfriend_car.wrap_around_tree because an instance method has to apply to an instance of that Class.
Class Methods
Say I wanted to build a car? my_new_car = Car.build
I call a Class method because it wouldn't make any sense to call it on an instance? my_car.build? my_car is already built.
Conclusion
If you're struggling to understand OOP then you should make sure that you understand the difference between the Class itself and instances of that Class. Furthermore, you should try to undesrstand the difference between class methods and instance methods. I'd recommend learning some Ruby or Python just so you can get a fuller understanding of OOP withouth the added complicaitons of writing OOP in a non-OOP language.
Great things happen with a true OOP language. In Ruby, EVERYTHING is a class. Even nothing (Nil) is a class. Strings are classes. Numbers are classes and every class is descended from the Object class so you can do neat things like inherit the instance_methods method from Object so String.instance_methods tells you all the instance methods for a string.
Hope that helps!
Kevin.
It seems like you're asking about the procedures or "how-tos" of OOP, not the concepts.
For the how-tos, you're mostly correct: I'm not specifically familiar with PHP or ActionScript, but for those of us in .NET, your program will have some entry point which will take control, and then it will call vairous objects, functions, methods, or whatever- often passing control to other pieces of code- to perform whatever you've decided.
In psuedo-code, it might look something like:
EntryPoint
Initialize (instanciate) a Person
Validate the Person's current properties
Perform some kind of update and/or calculation
provide result to user
Exit
If what you're looking for is the "why" then you're already looking in the right places. The very definitions of the terms Encapsulation, Inheritance, etc. will shed light on why we do OOP.
It's mostly about grouping code that belongs to certain areas together. In non-OOP languages you often have the problem that you can't tell which function is used for what/modifies which structures or functions tend to do too many loosely related things. One work around is to introduce a strict naming scheme (e.g. start every function name with the structure name it's associated with). With OOP, every function is tied to a data structure (the object) and thus makes it easier to organize your code. If you code gets larger/the number of tasks bigger inheritance starts to make a difference.
Good example is a structure representing a shape and a function that returns its center. In non-OOP, that function must distinguish between each structure. That's a problem if you add a new shape. You have to teach your function how to calculate the center for that shape. Now imagine you also had functions to return the circumfence and area and ... Inheritance solves that problem.
Note that you can do OOP programming in non-OOP languages (see for example glib/gtk+ in C) but a "real" OOP language makes it easier and often less error-prone to code in OOP-style. On the other hand, you can mis-use almost every OOP language to write purely imperative code :-) And no language prevents one from writing stupid and inefficient code, but that's another story.
Not sure what sort of answer you're looking for, but I think 10s of 1000s of newly graduated comp sci students will agree: no amount of books and theory is a substitute for practice. In other words, I can explain encapsulation, polymorphism, inheritance at length, but it won't help teach you how to use OO effectively.
No one can tell you how to program. Over time, you'll discover that, no matter how many different projects your working on, you're solving essentially the same problems over and over again. You'll probably ask yourself regularly:
How to represent an object or a process in a meaningful way to the client?
How do I reuse functionality without copy-pasting code?
What actually goes in a class / how fine-grained should classes be?
How do support variations in functionality in a class of objects based on specialization or type?
How do support variations in functionality without rewriting existing code?
How do I structure large applications to make them easy to maintain?
How do I make my code easy to test?
What I'm doing seems really convoluted / hacky, is there an easier way?
Will someone else be able to maintain the code when I'm finished?
Will I be able to maintain the code in 6 months or a year from now?
etc.
There are lots of books on the subject, and they can give you a good head start if you need a little advice. But trust me, time and practice are all you need, and it won't be too long -- maybe 6 or 9 months on a real project -- when OO idioms will be second nature.

Can Procedural Programming use Objects?

I have seen a number of different topics on StackOverFlow discussing the differences between Procedural and Object-Oriented Programming. The question is: If the program uses an object can it still be considered procedural?
Yes, and a lot of early Java was exactly that; you had a bunch of C programmers get into Java because it was "hot", people who didn't think in OOP. Lots of big classes with lots of static methods, lots of RTTI in case statements, lots of use of instanceof.
GLib has GObject which is object oriented programming implemented in pure C. While you can build up an API which begins to "feel" like OOP, it's still just plain "C" code with no actual classes (from the compiler's point of view). If you get far enough so you're starting to implement Object Oriented design patterns then I would call that OOP no matter what language it's written in. It's all about the feel of the code and how you have to think to write against it.
Procedural programming has to do with how you structure your program and model your domain. Just because at some point you instantiate an object, doesn't alone make your program oriented towards objects (i.e., object-oriented).
The distinction is entirely subjective. For example, if you code a C library using state passing, you are implementing something of a "tell" pattern, with the state as the object.
Classes can be considered as super types. When we converted from VB3 to VB6 our first pass was finding all the types we used, then finding all the subroutines and functions that took that type as a parameter. We moved those into the class definition, removed the parameter and then tested leaving the original flow of control intact
Then we refactored our flow of control to use various patterns and object oriented techniques.
The heart of object orientation is about how you decompose the problem into smaller parts, and how these parts work together. It's about the philosophy. Using OO language does not necessarily mean a program written in it is OO; it's just easier to do OO with a language that supports common OO concepts out of the box.
To answer the question: "If the program uses an object can it still be considered procedural?" - That depends on what your definitions of object and procedural programming are. But in my opinion, the answer is resounding "Yes". "Objects" are only a part of the philosophy that is OO and using them "somewhere in your application" does not mean you're doing OO.
The answer to your question is, yes. For example. I've got an old php legacy page to maintain. Most of the code is procedural but I decided that some things can be maintained much easier if I plug Zend Framework into the existing stuff and write some of my own classes to replace some of the old code. In general this application is still written and functioning in a mainly procedural way but here and then a class or another are instantiated and used. I guess there is no clear border between procedural and OO. You can do it cleaner or less clean. If you don't have enough layers for the size and complexity of your app you'll end up with more procedural code automatically too...