I have been reading papers about LSTM and checking its implementations. There is one point that is not clear to me.
In most of the papers it is mentioned that the weight matrices from the cell to gate vectors should be diagonal(ex: Alex page 5, 2013), but I haven't seen this in any implementation.
For example this :
1
2
Another example is from mila lab.
3
Are these people implementing wrongly or am I missing something?
The TensorFlow implementation does use a diagonal matrix, see here. Note that what this means in practice is that the peepholes only go from the cell to itself, and so you're doing elementwise vector multiplies.
Related
In the GPT-2 paper, under Section 2, Page 3 it says,
Since the supervised objective is the the same as the unsupervised objective but only evaluated on a subset of the sequence, the global minimum of the unsupervised objective is also the global minimum of the supervised objective.
I didn't follow this line of reasoning. What is the logic behind concluding this?
The underlying principle here is that if f is a function with domain D and S is a subset of D, then if d maximizes f over D and d happens to be in S, then d also maximizes f over S.
In simper words "a global maximum is also a local maximum".
Now how does this apply to GPT-2? Let's look at how GPT-2 is trained.
First step: GPT-2 uses unsupervised training to learn the distribution of the next letter in a sequence by examining examples in a huge corpus of existing text. By this point, it should be able to output valid words and be able to complete things like "Hello ther" to "Hello there".
Second step: GPT-2 uses supervised training at specific tasks such as answering specific questions posed to it such as "Who wrote the book the origin of species?" Answer "Charles Darwin".
Question: Does the second step of supervised training undo general knowledge that GPT-2 learned in the first step?
Answer: No, the question-answer pair "Who wrote the book the origin of species? Charles Darwin." is itself valid English text that comes from the same distribution that the network is trying to learn in the first place. It may well even appear verbatim in the corpus of text from step 1. Therefore, these supervised examples are elements of the same domain (valid English text) and optimizing the loss function to get these supervised examples correct is working towards the same objective as optimizing the loss function to get the unsupervised examples correct.
In simpler words, supervised question-answer pairs or other specific tasks that GPT-2 was trained to do use examples from the same underlying distribution as the unsupervised corpus text, so they are optimizing towards the same goal and will have the same global optimum.
Caveat: you can still accidentally end up in a local-minimum due to (over)training using these supervised examples that you might not have run into otherwise. However, GPT-2 was revolutionary in its field and whether or not this happened with GPT-2, it still made significant progress from the state-of-the-art before it.
The paper time2vector link (the relevant theory is in section 4) shows an approach to include a time embedding for features to improve model performance. I would like to give this a try. I found a implementation as keras layer which I changed a little bit. Basically it creates two matrices for one feature:
(1) linear = w * x + b
(2) periodic = sin(w * x + b)
Currently I choose this feature manually. Concerning the paper there are a few things i don't understand. The first thing is the term k as the number of sinusoids. The authors use up to 64 sinusoids. What does this mean? I have just 1 sinusoid at the moment, right? Secondly I'm about to put every feature I have through the sinus transformation for me dataset that would make 6 (sinusoids) periodic features. The authors use only one linear term. How should I choose the feature for the linear term? Unfortunately the code from the paper is not available anymore. Has anyone worked with time embeddings or even with this particularly approach?
For my limited understanding, the linear transformation of time is a fixed element of the produced embedding and the parameter K allows you to select how many different learned time representations you want to use in your model. So, the resulting embedding has a size of K+1 elements.
So I've read the paper named Self-Governing Neural Networks for On-Device Short Text Classification which presents an embedding-free approach to projecting words into a neural representation. To quote them:
The key advantage of SGNNs over existing work is that they surmount the need for pre-trained word embeddings and complex networks with huge parameters. [...] our method is a truly embedding-free approach unlike majority of the widely-used state-of-the-art deep learning techniques in NLP
Basically, from what I understand, they proceed as follow:
You'd first need to compute n-grams (side-question: is that skip-gram like old skip-gram, or new skip-gram like word2vec? I assume it's the first one for what remains) on words' characters to obtain a featurized representation of words in a text, so as an example, with 4-grams you could yield a 1M-dimensional sparse feature vector per word. Hopefully, it's sparse so memory needn't to be fully used for that because it's almost one-hot (or count-vectorized, or tf-idf vectorized ngrams with lots of zeros).
Then you'd need to hash those n-grams sparse vectors using Locality-sensitive hashing (LSH). They seem to use Random Projection from what I've understood. Also, instead of ngram-vectors, they instead use tuples of n-gram feature index and its value for non-zero n-gram feature (which is also by definition a "sparse matrix" computed on-the-fly such as from a Default Dictionary of non-zero features instead of a full vector).
I found an implementation of Random Projection in scikit-learn. From my tests, it doesn't seem to yield a binary output, although the whole thing is using sparse on-the-fly computations within scikit-learn's sparse matrices as expected for a memory-efficient (non-zero dictionnary-like features) implementation I guess.
What doesn't work in all of this, and where my question lies, is in how they could end up with binary features from the sparse projection (the hashing). They seem to be saying that the hashing is done at the same time of computing the features, which is confusing, I would have expected the hashing to come in the order I wrote above as in 1-2-3 steps, but their steps 1 and 2 seems to be somehow merged.
My confusion arises mostly from the paragraphs starting with the phrase "On-the-fly Computation." at page 888 (PDF's page 2) of the paper in the right column. Here is an image depicting the passage that confuses me:
I'd like to convey my school project to a success (trying to mix BERT with SGNNs instead of using word embeddings). So, how would you demystify that? More precisely, how could a similar random hashing projection be achieved with scikit-learn, or TensorFlow, or with PyTorch? Trying to connect the dots here, I've significantly researched but their paper doesn't give implementation details, which is what I'd like to reproduce. I at least know that the SGNN uses 80 fourten-dimensionnal LSHes on character-level n-grams of words (is my understanding right in the first place?).
Thanks!
EDIT: after starting to code, I realized that the output of scikit-learn's SparseRandomProjection() looks like this:
[0.7278244729081154,
-0.7278244729081154,
0.0,
0.0,
0.7278244729081154,
0.0,
...
]
For now, this looks fine, it's closer to binary but it would still be castable to an integer instead of a float by using the good ratio in the first place. I still wonder about the skip-gram thing, I assume n-gram of characters of words for now but it's probably wrong. Will post code soon to GitHub.
EDIT #2: I coded something here, but with n-grams instead of skip-grams: https://github.com/guillaume-chevalier/SGNN-Self-Governing-Neural-Networks-Projection-Layer
More discussion threads on this here: https://github.com/guillaume-chevalier/SGNN-Self-Governing-Neural-Networks-Projection-Layer/issues?q=is%3Aissue
First of all, thanks for your implementation of the projection layer, it helped me get started with my own.
I read your discussion with #thinline72, and I agree with him that the features are calculated in the whole line of text, char by char, not word by word. I am not sure this difference in features is too relevant, though.
Answering your question: I interpret that they do steps 1 and 2 separately, as you suggested and did. Right, in the article excerpt that you include, they talk about hashing both in feature construction and projection, but I think those are 2 different hashes. And I interpret that the first hashing (feature construction) is automatically done by the CountVectorizer method.
Feel free to take a look at my implementation of the paper, where I built the end-to-end network and trained on the SwDA dataset, as split in the SGNN paper. I obtain a max of 71% accuracy, which is somewhat lower than the paper claims. I also used the binary hasher that #thinline72 recommended, and nltk's implementation of skipgrams (I am quite certain the SGNN paper is talking about "old" skipgrams, not "word2vec" skipgrams).
I have a question raised by studing LSTM. At the following link I found a very useful explaination of the LSTM mechanism. Parts and equations from this blog post have been reported in several other webpages about LSTM (including Wikipedia). However, by reading the original paper of LSTM there is something that doesn't match. My question is about the update of the cell'state. In the blog it is defined by the equation that defines Ct, this equation takes into account either the last output ht-1 and the current input xt.
In the paper, equation (6) tells me that the state at time t s(t)c depends on the element g(netc(t)), that is the analog of C~ of the blog equation. The equation (6) is the following (the term yin is the input gate).
As you can see from the above figures, C~ depends on both the previous output h and the current input x. However, netc(t) in the paper doesn't take into account the current input xt.
Indeed the definition of netc(t) is the following (equation 4 in the paper).
where yu(t-1) is the output value of unit u at time t-1.
So my question is about if there is an error in the paper or in the blog. Since The blog's version is the one I've often found in courses, tutorials, and all practical material including tensorflow implementation!
Note that the same question raises about the computation of the input gate it.
PS. the cited paper is the first about LSTM, the forget gate has been introduced by another paper, however the mentioned equations are the same in both papers.
I've been reading the docs to learn TensorFlow and have been struggling on when to use the following functions and their purpose.
tf.split()
tf.reshape()
tf.transpose()
My guess so far is that:
tf.split() is used because inputs must be a sequence.
tf.reshape() is used to make the shapes compatible (Incorrect shapes tends to be a common problem / mistake for me). I used numpy for this before. I'll probably stick to tf.reshape() now. I am not sure if there is a difference between the two.
tf.transpose() swaps the rows and columns from my understanding. If I don't use tf.transpose() my loss doesn't go down. If the parameter values are incorrect the loss doesn't go down. So the purpose of me using tf.transpose() is so that my loss goes down and my predictions become more accurate.
This bothers me tremendously because I'm using tf.transpose() because I have to and have no understanding why it's such an important factor. I'm assuming if it's not used correctly the inputs and labels can be in the wrong position. Making it impossible for the model to learn. If this is true how can I go about using tf.transpose() so that I am not so reliant on figuring out the parameter values via trial and error?
Question
Why do I need tf.transpose()?
What is the purpose of tf.transpose()?
Answer
Why do I need tf.transpose()? I can't imagine why you would need it unless you coded your solution from the beginning to require it. For example, suppose I have 120 student records with 50 stats per student and I want to use that to try and make a linear association with their chance of taking 3 classes. I'd state it like so
c = r x m
r = records, a matrix with a shape if [120x50]
m = the induction matrix. it has a shape of [50x3]
c = the chance of all students taking one of three courses, a matrix with a shape of [120x3]
Now if instead of making m [50x3], we goofed and made m [3x50], then we'd have to transpose it before multiplication.
What is the purpose of tf.transpose()?
Sometimes you just need to swap rows and columns, like above. Wikipedia has a fantastic page on it. The transpose function has some excellent properties for matrix math function, like associativeness and associativeness with the inverse function.
Summary
I don't think I've ever used tf.transpose in any CNN I've written.