Just wondering, is it possible to club a set of trajectory points of a trip into an equation or some king of curve function. Basically I have set of gps data points for multiple trips. I want to aggregate the data at trip level but want to express the entire trajectory as a line or equation or function. Can this be implemented?
TIA!
Regards,
Lesnar
Related
I'm trying to use a VectorNav VN100 IMU to map a path through an underground tunnel (GPS denied environment) and am wondering what is the best approach to take to do this.
I get lots of data points from the VN100 these include: orientation/pose (Euler angles, quaternions), and acceleration and gyroscope values in three dimensions. The acceleration and gyro values are given in raw and filtered formats where filtered outputs have been filtered using an onboard Kalman filter.
In addition to IMU measurements I also measure GPS-RTK coordinates in three dimensions at the start and end-points of the tunnel.
How should I approach this mapping problem? I'm quite new to this area and do not know how to extract position from the acceleration and orientation data. I know acceleration can be integrated once to give velocity and that in turn can be integrated again to get position but how do I combine this data together with orientation data (quaternions) to get the path?
In robotics, Mapping means representing the environment using perception sensor (like 2D,3D laser or Cameras).
Once you got the map, it can be used by robot to know its location(Localization). Map is also used for find a path between locations to move from one place to another place(Path planning).
In your case you need a perception sensor to get the better location estimation. With only IMU you can track the position using Extended Kalman filter(EKF) but it drifts quickly.
Robot Operating System has EKF implementation you can refer it.
Ok so I came across a solution that gets me somewhat closer to my goal of finding the path travelled underground, although it is by no means the final solution I'm posting my algorithm here in the hopes that it helps someone else.
My method is as follows:
Rotate the Acceleration vector A = [Ax, Ay, Az] output by the VectorNav VN100 into the North, East, Down frame by multiplying by the quaternion VectorNav output Q = [q0, q1, q2, q3]. How to multiply a vector by a quaternion is outlined in this other post.
Basically you take the acceleration vector and add a fourth component on to the end of it to act as the scalar term, then multiply by the quaternion and it's conjugate (N.B. the scalar terms in both matrices should be in the same position, in this case the scalar quaternion term is the first term, so therefore a zero scalar term should be added on to the start of the acceleration vector) e.g. A = [0,Ax,Ay,Az]. Then perform the following multiplication:
A_ned = Q A Q*
where Q* is the complex conjugate of the quaternion (i, j, and k terms are negated).
Integrate the rotated acceleration vector to get the velocity vector: V_ned
Integrate the Velocity vector to get the position in north, east, down: R_ned
There is substantial drift in the velocity and position due to sensor bias which causes drift. This can be corrected for somewhat if we know the start and end velocity and start and end positions. In this case the start and end velocities were zero so I used this to correct the drift in the velocity vector.
Uncorrected Velocity
Corrected Velocity
My final comparison between IMU position vs GPS is shown here (read: there's still a long way to go).
GPS-RTK data vs VectorNav IMU data
Now I just need to come up with a sensor fusion algorithm to try to improve the position estimation...
I am currently creating a feature and patterning it across a flat plane to get the maximum number of features to fit on the plane. I do this frequently enough to warrant building some sort of marcro for this if possible. The issue that I run into is I still have to manually set the spacing between the parts. I want to be able to create a feature and have it determine "best" fit spacing given an area while avoiding overlaps. I have had very little luck finding any resources describing this. Any information or links to potentially helpful resources on this would be much appreciated!
Thank you.
Before, you start the linear pattern bit:
Select the face2 of that feature2, get the outer most loop2 of edges. You can test for that using loop2.IsOuter.
Now:
if the loop has one edge: that means it's a circle and the spacing must superior to the circle's radius
if the loop has more that one edge, that you need to calculate all the distances between the vertices and assume that the largest distance is the safest spacing.
NOTA: If one of the edges is a spline, then you need a different strategy:
You would need to convert the face into a sketch and finds the coordinates of that spline to calculate the highest distances.
Example: The distance between the edges is lower than the distance between summit of the splines. If the linear pattern has the a vertical direction, then spacing has to be superior to the distance between the summit.
When I say distance, I mean the distance projected on the linear pattern direction.
Does anyone have any ideas how to implement a monte carlo integration simulator in vb.net.
I have looked around the internet with no luck.
Any code, or ideas as to how to start it would be of help.
Well i guess we are talking about a 2 dimensional problem. I assume you have a polygon of which you want to calculate the area.
1) First you need a function to check if a point is inside the polygon.
2) Now you define an area with a known size around the polygon.
3) Now you need random points inside your known area, some of them will be in your polygon, some will be outside, count them!
4) Now you have two relations: First the relations of all points to points inside your polygon. Second the area around your polygon which you know, to the area of the polygon you don't know.
5) The relations is the same --> you can calculate the area of your polygon! (Area of polygon should be: points in you polygon / all your points * size of known area)
Example: 3 points hits hit the polygon, 20 points where "shot", the area of the polygon is 0.6m²
NOTE: This area is only an approach! The more points you have, the better the approach gets.
You can implement a fancy method to display this in your vb program of course. Was this what you needed? Is my assumption about the polygon correct? Do you need help with the "point inside polygon" algorithm?
There is nothing specific to VB.net with this problem, except maybe for the choice of a random number generator from the library.
Numerically solving integrals of a function f(x_1,...,x_n) by using can become infeasible (in acceptable time) for high dimensions n, because the number of sample points needed for a given sampling distance grows exponentially with the dimension of the problem. The fundamental idea with Monte Carlo Integration is to replace the uniform sampling of the variables x_1,...,x_n with random sampling, taking n random numbers per sample. With these samples, estimate the integral. The more samples, the better the estimate. And the major benefit of MC integration is, that you can use standard statistical methods to estimate the error of your result.
So, how to start: Implement integration by uniform sampling of the integration space, then go to random sampling and add error estimation.
I have some data that tells me the amount of hours water is available for particular towns.
You can see it here
I want to use train a Multilayer Perceptron based on that data, to take a set of coordinates and indicate the approximate number of hours for which that coordinate will have water.
Does this make sense?
If so, am I correct in saying, there has to be two input layers? One for lat and one for long. And the output layer should be the number of hours.
Would love some guidance.
I would solve that differently:
Just create an ArrayList of WaterInfo:
WaterInfo contains lat,lon, waterHours.
Then for a given coordinate search the closest WaterInfo in the list.
Since you have not many elements, just do a brute force search, to find the closest.
You further can optimize, to find the three closest WaterInfo points, and calculate the weithted average of WaterHours. As weight you use the air distance from current position to Waterinfo position.
To answer your question:
"Does this makes sense"?
From the goal to get a working solution: NO!
Ask yourself, why do you want to use MLP for this task.
Further i doubt that using two layers for lat / long makes sense.
A coordinate (lat/lon) is one point on the world, so that should be one layer in the model. You can convert the lat/lon coord to a cell identifier: Span a grid over Brazil; with cell width 10 or 50km; now convert a lat/long coordinate to a cellId: Like E4 on a chess board, you will calculate one integer value representing the cell. (There are other solutions to get an unique number, too, choose one you like)
Now you have a modell geoCellID -> waterHours, which better represents the real world situation.
I need use the data of this site: http://www.navcen.uscg.gov/?Do=gpsArchives&path=2012
to develop a small software that plot a chart about satellate availability, something like this: http://i.stack.imgur.com/X0iGL.jpg
The user must set a day, a latitude/longitude position and a time zone, then my application must plot the satellate availability for 7 days (from user day) to choose the best day.
I'm not a GPS expert so I don't know which and how use the data from almanac to make the plot.
Any idea?
If you're good at Matlab you could try using this
This program calculate GPS visible satellites by exerting terrain for high accuracy prediction.
inputs:
Coordinate of Station on earth.
GPS Almanac file.
Terrain Data in "txt" format(just for DSM calculation).
Or you could go through the gpstk code and refer to how ComputeStationSatelliteVisibility l is implemented
The almanac contains the elipse parameters that describe the curve of one satellite around the earth. Using these params you could determine where the sats are positioned for a specific time and position.
Assume a visibility of 170° of the sky: 5° are hidden by houses or mountains at the horizon.
Refer to :
http://www.navcen.uscg.gov/?pageName=gpsAlmanacs
and
http://www.navcen.uscg.gov/pdf/gps/Programmatically%20Accessing.pdf