ActiveMq subscribed messages Delivered every time I connect with a new client ID - activemq

I am creating an iOS app in which I have used mosquito library for Integrating Active MQ.
Everything is working fine except,I get all the messages again when I reconnect with new client id.
cleanSession flag is set to false;
Any help would be appreciated.

I suppose you are talking about a new client id for each time you connect?
Check the retain flag of the publish messages. If it is set to true the broker will retain the messages and since you are connecting with a new client id they would be sent to your client given that you subscribe to the certain topics.
Also to quote mosquitto.org about cleanSession.
If clean session is set to false, then the connection is treated as durable. This means that when the client disconnects, any subscriptions it has will remain and any subsequent QoS 1 or 2 messages will be stored until it connects again in the future.
I should say that the question seems a little ill-informed, would be better to have a better explanation for a better and spot on answer.

Related

RabbitMQ security design to declare queues from server (and use from client)

I have a test app (first with RabbitMQ) which runs on partially trusted clients (in that i don't want them creating queues on their own), so i will look into the security permissions of the queues and credentials that the clients connect with.
For messaging there are mostly one-way broadcasts from server to clients, and sometimes a query from server to a specific client (over which the replies will be sent on a replyTo queue which is dedicated to that client on which the server listens for responses).
I currently have a receive function on the server which looks out for "Announce" broadcast from clients:
agentAnnounceListener.Received += (model, ea) =>
{
var body = ea.Body;
var props = ea.BasicProperties;
var message = Encoding.UTF8.GetString(body);
Console.WriteLine(
"[{0}] from: {1}. body: {2}",
DateTimeOffset.FromUnixTimeMilliseconds(ea.BasicProperties.Timestamp.UnixTime).Date,
props.ReplyTo,
message);
// create return replyTo queue, snipped in next code section
};
I am looking to create the return to topic in the above receive handler:
var result = channel.QueueDeclare(
queue: ea.BasicProperties.ReplyTo,
durable: false,
exclusive: false,
autoDelete: false,
arguments: null);
Alternatively, i could store the received announcements in a database, and on a regular timer run through this list and declare a queue for each on every pass.
In both scenarioes this newly created channel would then be used at a future point by the server to send queries to the client.
My questions are please:
1) Is it better to create a reply channel on the server when receiving the message from client, or if i do it externally (on a timer) are there any performance issues for declaring queues that already exist (there could be thousands of end points)?
2) If a client starts to miss behave, is there any way that they can be booted (in the receive function i can look up how many messages per minute and boot if certain criteria are met)? Are there any other filters that can be defined prior to receive in the pipeline to kick clients who are sending too many messages?
3) In the above example notice my messages continuously come in each run (the same old messages), how do i clear them out please?
I think preventing clients from creating queues just complicates the design without much security benefit.
You are allowing clients to create messages. In RabbitMQ, its not very easy to stop clients from flooding your server with messages.
If you want to rate-limit your clients, RabbitMQ may not be the best choice. It does rate-limiting automatically when servers starts to struggle with processing all the messages, but you can't set a strict rate limit on per-client basis on the server using out-of-the-box solution. Also, clients are normally allowed to create queues.
Approach 1 - Web App
Maybe you should try to use web application instead:
Clients authenticate with your server
To Announce, clients send a POST request to a certain endpoint, ie /api/announce, maybe providing some credentials that allow them to do so
To receive incoming messages, GET /api/messages
To acknowledge processed message: POST /api/acknowledge
When client acknowledges receipt, you delete your message from database.
With this design, you can write custom logic to rate-limit or ban clients that misbehave and you have full control of your server
Approach 2 - RabbitMQ Management API
If you still want to use RabbitMQ, you can potentially achieve what you want by using RabbitMQ Management API
You'll need to write an app that will query RabbitMQ Management API on timer basis and:
Get all the current connections, and check message rate for each of them.
If message rate exceed your threshold, close connection or revoke user's permissions using /api/permissions/vhost/user endpoint.
In my opinion, web app may be easier if you don't need all the queueing functionality like worker queues or complicated routing that you can get out of the box with RabbitMQ.
Here are some general architecture/reliability ideas for your scenario. Responses to your 3 specific questions are at the end.
General Architecture Ideas
I'm not sure that the declare-response-queues-on-server approach yields performance/stability benefits; you'd have to benchmark that. I think the simplest topology to achieve what you want is the following:
Each client, when it connects, declares an exclusive and/or autodelete anonymous queue. If the clients' network connectivity is so sketchy that holding open a direct connection is undesirable, so something similar to Alex's proposed "Web App" above, and have clients hit an endpoint that declares an exclusive/autodelete queue on their behalf, and closes the connection (automatically deleting the queue upon consumer departure) when a client doesn't get in touch regularly enough. This should only be done if you can't tune the RabbitMQ heartbeats from the clients to work in the face of network unreliability, or if you can prove that you need queue-creation rate limiting inside the web app layer.
Each client's queue is bound to a broadcast topic exchange, which the server uses to communicate broadcast messages (wildcarded routing key) or specifically targeted messages (routing key that only matches one client's queue name).
When the server needs to get a reply back from the clients, you could either have the server declare the response queue before sending the "response-needed" message, and encode the response queue in the message (basically what you're doing now), or you could build semantics in your clients in which they stop consuming from their broadcast queue for a fixed amount of time before attempting an exclusive (mutex) consume again, publish their responses to their own queue, and ensure that the server consumes those responses within the allotted time, before closing the server consume and restoring normal broadcast semantics. That second approach is much more complicated and likely not worth it, though.
Preventing Clients Overwhelming RabbitMQ
Things that can reduce the server load and help prevent clients DoSing your server with RMQ operations include:
Setting appropriate, low max-length thresholds on all the queues, so the amount of messages stored by the server will never exceed a certain multiple of the number of clients.
Setting per-queue expirations, or per-message expirations, to make sure that stale messages do not accumulate.
Rate-limiting specific RabbitMQ operations is quite tricky, but you can rate-limit at the TCP level (using e.g. HAProxy or other router/proxy stacks), to ensure that your clients don't send too much data, or open too many connections, at a time. In my experience (just one data point; if in doubt, benchmark!) RabbitMQ cares less about the count of messages ingested per time than it does the data volume and largest possible per-message size ingested. Lots of small messages are usually OK; a few huge ones can cause latency spikes, otherwise, rate-limiting the bytes at the TCP layer will probably allow you to scale such a system very far before you have to re-assess.
Specific Answers
In light of the above, my answers to your specific questions would be:
Q: Should you create reply queues on the server in response to received messages?
A: Yes, probably. If you're worried about the queue-creation rate
that happens as a result of that, you can rate-limit per server instance. It looks like you're using Node, so you should be able to use one of the existing solutions for that platform to have a single queue-creation rate limiter per node server instance, which, unless you have many thousands of servers (not clients), should allow you to reach a very, very large scale before re-assessing.
Q: Are there performance implications to declaring queues based on client actions? Or re-declaring queues?
A: Benchmark and see! Re-declares are probably OK; if you rate-limit properly you may not need to worry about this at all. In my experience, floods of queue-declare events can cause latency to go up a bit, but don't break the server. But that's just my experience! Everyone's scenario/deployment is different, so there's no substitute for benchmarking. In this case, you'd fire up a publisher/consumer with a steady stream of messages, tracking e.g. publish/confirm latency or message-received latency, rabbitmq server load/resource usage, etc. While some number of publish/consume pairs were running, declare a lot of queues in high parallel and see what happens to your metrics. Also in my experience, the redeclaration of queues (idempotent) doesn't cause much if any noticeable load spikes. More important to watch is the rate of establishing new connections/channels. You can also rate-limit queue creations very effectively on a per-server basis (see my answer to the first question), so I think if you implement that correctly you won't need to worry about this for a long time. Whether RabbitMQ's performance suffers as a function of the number of queues that exist (as opposed to declaration rate) would be another thing to benchmark though.
Q: Can you kick clients based on misbehavior? Message rates?
A: Yes, though it's a bit tricky to set up, this can be done in an at least somewhat elegant way. You have two options:
Option one: what you proposed: keep track of message rates on your server, as you're doing, and "kick" clients based on that. This has coordination problems if you have more than one server, and requires writing code that lives in your message-receive loops, and doesn't trip until RabbitMQ actually delivers the messages to your server's consumers. Those are all significant drawbacks.
Option two: use max-length, and dead letter exchanges to build a "kick bad clients" agent. The length limits on RabbitMQ queues tell the queue system "if more messages than X are in the queue, drop them or send them to the dead letter exchange (if one is configured)". Dead-letter exchanges allow you to send messages that are greater than the length (or meet other conditions) to a specific queue/exchange. Here's how you can combine those to detect clients that publish messages too quickly (faster than your server can consume them) and kick clients:
Each client declares it's main $clientID_to_server queue with a max-length of some number, say X that should never build up in the queue unless the client is "outrunning" the server. That queue has a dead-letter topic exchange of ratelimit or some constant name.
Each client also declares/owns a queue called $clientID_overwhelm, with a max-length of 1. That queue is bound to the ratelimit exchange with a routing key of $clientID_to_server. This means that when messages are published to the $clientID_to_server queue at too great a rate for the server to keep up, the messages will be routed to $clientID_overwhelm, but only one will be kept around (so you don't fill up RabbitMQ, and only ever store X+1 messages per client).
You start a simple agent/service which discovers (e.g. via the RabbitMQ Management API) all connected client IDs, and consumes (using just one connection) from all of their *_overwhelm queues. Whenever it receives a message on that connection, it gets the client ID from the routing key of that message, and then kicks that client (either by doing something out-of-band in your app; deleting that client's $clientID_to_server and $clientID_overwhelm queues, thus forcing an error the next time the client tries to do anything; or closing that client's connection to RabbitMQ via the /connections endpoint in the RabbitMQ management API--this is pretty intrusive and should only be done if you really need to). This service should be pretty easy to write, since it doesn't need to coordinate state with any other parts of your system besides RabbitMQ. You'll lose some messages from misbehaving clients with this solution, though: if you need to keep them all, remove the max-length limit on the overwhelm queue (and run the risk of filling up RabbitMQ).
Using that approach, you can detect spamming clients as they happen according to RabbitMQ, not just as they happen according to your server. You could extend it by also adding a per-message TTL to messages sent by the clients, and triggering the dead-letter-kick behavior if messages sit in the queue for more than a certain amount of time--this would change the pseudo-rate-limiting from "when the server consumer gets behind by message count" to "when the server consumer gets behind by message delivery timestamp".
Q: Why do messages get redelivered on each run, and how do I get rid of them?
A: Use acknowledgements or noack (but probably acknowledgements). Getting a message in "receive" just pulls it into your consumer, but doesn't pop it from the queue. It's like a database transaction: to finally pop it you have to acknowledge it after you receive it. Altnernatively, you could start your consumer in "noack" mode, which will cause the receive behavior to work the way you assumed it would. However, be warned, noack mode imposes a big tradeoff: since RabbitMQ is delivering messages to your consumer out-of-band (basically: even if your server is locked up or sleeping, if it has issued a consume, rabbit is pushing messages to it), if you consume in noack mode those messages are permanently removed from RabbitMQ when it pushes them to the server, so if the server crashes or shuts down before draining its "local queue" with any messages pending-receive, those messages will be lost forever. Be careful with this if it's important that you don't lose messages.

ActiveMQ - Update on Connect?

I'm working with ActiveMQ to implement some notification solutions in the emergency management / public safety sphere. Right now I'm setting up a topic to move updates to an OpenLayers map using Stomp over websockets.
My question is... is there a way to ensure that each consumer gets the most recent message on connect? I have it in mind to push updates every fifteen seconds or so, but I'd like folks to get the latest update when they connect and not have to wait till the next scheduled push.
Anything is possible, of course, so I guess my question is "is that feasible without a lot of pain?"
TIA,
Art
You have a durable subscription but this backup all messages sent when consumer is offline, you can setup the expiry time for messages to be short to be discarded when consumer reconnect or use the retroactive consumer http://activemq.apache.org/retroactive-consumer.html

RabbitMQ Message Lifetime Replay Message

We are currently evaluating RabbitMQ. Trying to determine how best to implement some of our processes as Messaging apps instead of traditional DB store and grab. Here is the scenario. We have a department of users who perform similar tasks. As they submit work to the server applications we would like the server app to send messages back into a notification window saying what was done - to all the users, not just the one submitting the work. This is all easy to do.
The question is we would like these message to live for say 4 hours in the Queue. If a new user logs in or say a supervisor they would get all the messages from the last 4 hours delivered to their notification window. This gives them a quick way to review what has recently happened and what is going on without having to ask others, "have you talked to John?", "Did you email him is itinerary?", etc.
So, how do we publish messages that have a lifetime of x hours from the time they were published AND any new consumers that connect will get all of these messages delivered in chronological order? And preferably the messages just disappear after they have expired from the queue.
Thanks
There is Per-Queue Message TTL and Per-Message TTL in RabbitMQ. If I am right you can utilize them for your task.
In addition to the above answer, it would be better to have the application/client publish messages to two queues. Consumer would consume from one of the queues while the other queue can be configured using per queue-message TTL or per message TTL to retain the messages.
Queuing messages you do to get a message from one point to the other reliable. So the sender can work independently from the receiver. What you propose is working with a temporary persistent store.
A sql database would fit perfectly, but also a mongodb would work nicely. You drop a document in mongo, give it a ttl and let the database handle the expiration.
http://docs.mongodb.org/master/tutorial/expire-data/

Camel route "to" specific websocket endpoint

I have some camel routes with mina sockets and jetty websockets. I am able to broadcast a message to all the clients connected to the websocket but how do i send a message to a specific endpoint. How do i maintain a list of all connected clients with a client id as reference so i can route to a specific client. Is that possible? Will i be able to mention a dynamic client in the to URI?
Or maybe i am thinking about this wrong and i need to create topics on active mq and have the clients subscribe to it. That would mean that i create a topic for every websocket client? and route the message to the right topic.
Am i atleast on the right track here, any examples you can point out? Google was not helpful.
The approach you take depends on how sensitive the client information is. The downside of a single topic with selectors is that anyone can subscribe to the topic without a selector and see all the information for everyone - not usually something that you want to do.
A better scheme is to use a message distribution mechanism (set of Camel routes) that act as an intermediary between the websocket clients and the system producing the messages. This mechanism is responsible for distributing messages from a single destination to client-specitic destinations. I have worked on a couple of banking web front-ends that used a similar scheme.
In order for this to work you first generate for each user a distinct token/UUID; this is presented to the user when the session is established (usually through some sort of profile query/message).
It's essential that the UUID can be worked out as a hash of the clientId rather than being stored in a DB, as it will be used all the time and you want to make sure this is worked out quickly.
The user then uses that information to connect to specific topics that use that UUID as a suffix. For example two users subscribing to an orderConfirmation topic would each subscribe to their own version of that topic:
clientA -> orderConfirmation.71jqsd87162iuhw78162wd7168
clientB -> orderConfirmation.76232hdwe7r23j92irjh291e0d
To keep track of "presence", your clients would need to periodically send a heartbeat message containing their clientId to a well-known topic that your distribution mechanism listens on. Clients should not be able to subscribe to this topic for reads (see ActiveMQ Security). The message distribution mechanism needs to keep in memory a data structure that contains the clientId and the time a heartbeat was last seen.
When a message is received by the distribution mechanism, it checks whether the clientID for which it received the message has a "live/present" session, determines the UUID for the client, and broadcasts the message on the appropriate topic.
Over time this will create a large number of topics on your broker that you don't want hanging around when the user has gone away. You can configure ActiveMQ to delete these if they have been inactive for some time.
You definitely do not want to create separate endpoint for each client.
Topic and a subscription with selector is an elegant way to resolve it.
I would say the best one.
You need single topic, which every client would subscribe to with the selector looking like where clientId in ('${myClientId}', 'EVERYONE'). Now when you want to publish a message to specific client, you set a property clientId to the id of this client. If you want to broadcast, you set it to 'EVERYONE'
I hope I understand the problem right...

Configure RabbitMQ to replace an old pending message with a new one

Is is possible to configure a RabbitMQ exchange or a queue in such a way that at most one message with a given routing key is pending at any time? If new message arrives, the old one would be dropped and the new one enqueued.
If such option is not available, what would be the best way to implement this at the application level? I.e. when application receives a message how can it check if there any more pending messages?
You need to install Last Value Cache and enable it. Your exchange will be type "x-lvc", which inherits from the direct exchange type.
each time you connect to MQ, create a queue and bind to this exchange. It will deliver the most recent message to the queue. It is perfect for making sure you get only the most uptodate message. All other messages sent to this exchange are discarded unless there is a queue connected. So once connected you will continue to receive updates.
here are installation instructions:
https://github.com/simonmacmullen/rabbitmq-lvc-plugin
here is a similar question:
RabbitMQ messaging - initializing consumer