Modeling a 1:Many relationship with an attribute - sql

I've come across a table design that immediately struck me as odd, but now that I've thought through it I can't seem to come up with a design that I'm really happy about.
The existing design (simplified) is:
CREATE TABLE Accounts (
account_id INT NOT NULL,
account_name VARCHAR(50) NOT NULL,
CONSTRAINT PK_Accounts PRIMARY KEY CLUSTERED (account_id)
)
CREATE TABLE Groups (
group_id INT NOT NULL,
group_name VARCHAR(50) NOT NULL,
CONSTRAINT PK_Groups PRIMARY KEY CLUSTERED (group_id)
)
CREATE TABLE Group_Accounts (
group_id INT NOT NULL,
account_id INT NOT NULL,
is_primary BIT NOT NULL,
CONSTRAINT PK_Group_Accounts PRIMARY KEY CLUSTERED (group_id, account_id)
)
While it looks like a standard many:many relationship, an account never actually belongs to more than one group. I immediately thought, "Ok, we could put the group_id into the Accounts table and that should work." But then what would I do with the is_primary attribute?
I could put an account_id into the Groups table as primary_account_id and then I believe that I could enforce RI with a foreign key on the primary_account_id, group_id to account_id, group_id.
Alternatively, I could move the "is_primary" flag into the Accounts table. Maybe that's the best solution?
Any thoughts on pros/cons for each approach? Am I missing any potential issues? Is there some other alternative that I've missed?
Is there any way to enforce a single primary account within a group in any of these situations outside of triggers (so primarily declarative RI)?
Thanks!

Relationship Cardinality
Judging by your description, you need 1:N relationship, which means you do not need the junction table Group_Accounts. Just a simple FK from Accounts to Groups should do.
Special Row
The next question is how you pick one row at the N side (Accounts) to be "special". You can either:
use the Accounts.is_primary flag and enforce its uniqueness (per group) through a filtered unique index (if your DBMS supports it),
or you could have a FK in Groups pointing to the primary account. In the latter case, though, you have to be careful to pick a primary account which actually belongs to the group.
The second approach can be modeled similar to this:
Groups.FK1 denotes:
FOREIGN KEY (group_id, primary_account_no) REFERENCES Accounts (group_id, account_no)
The presence of group_id in the FK above is what enforces primary account to belong to the group it is the primary account of.
Just be careful how you generate account_no when creating new accounts. You'll need to do something like this to avoid race conditions in concurrent environment (the actual code will varry by DBMS, of course).
Pick the first approach if your DBMS supports filtered indexes and there is no specific reason to pick the second approach.
Pick the second if:
you DBMS doesn't support filtered indexes,
or your DBMS supports deferred constraints and you need to enforce the presence of primary account at all times (just make primary_account_no NOT NULL),
or you don't actually need account_id, so you can have potentially one index less (depending on how strictly your DBMS requires indexes on FKs, and your actual workload, you may be able to avoid index on primary_account_no, as opposed to index that must be present on is_primary).

It is definitely possible to get rid of Group_Accounts.
From your description, it seems each group has many accounts, but each account only has one group. So you would put the group_id into the Accounts table as you suggest, and then put primary_account_id as a field in Groups.

It is possible to change the m:n intersection table, Group_Accounts, to a 1:n table by changing the PK to just the account id instead of both account and group. However, you would still be stuck with the additional overhead of enforcing the constraint that one and only one account is primary for any group.
However, if you move the group FK to the account record, where it really should be for 1:n cardinality, you can create a Primary_Accounts table kinda like the Group_Accounts table except the PK would be the group id. So each group could have one only one entry and that would be the one primary account. It would look like this:
create table Groups (
Id int not null,
Name varchar( 50 ) not null,
constraint PK_Groups primary key( Id )
);
create table Accounts (
Id int not null,
Name varchar( 50 ) not null,
GroupID int not null,
constraint PK_Accounts primary key( Id ),
constraint FK_AccountGroup foreign key( GroupID )
references Groups( ID )
);
create table PrimaryAccounts (
GroupID int not null,
AccountID int not null,
constraint PK_PrimaryAccounts primary key( GroupId ),
constraint FK_PrimaryGroup foreign key( GroupID )
references Groups( ID ),
constraint FK_PrimaryAccount foreign key( AccountID )
references Accounts( ID )
);
Now you have the 1:n cardinality design properly and you have the ability to designate one and only one account per group as the primary account.
However, there is one flaw. The PrimaryAccounts table must refer to an existing group and an existing account, but there is nothing that enforces the implicit requirement that the account be associated with the group.
Fortunately, this is easily fixed. Just add a constraint to the Accounts table:
constraint UQ_AccountGroup unique( GroupID, ID ),
Then, instead of creating two FKs in the PrimaryAccounts table, you need only one:
constraint FK_PrimaryGroupAccount foreign key( GroupID, AccountID )
references Accounts( GroupID, ID )
Now there can be only one primary account for each group and that account must be associated with the group.

Related

How to represent a "active group" relationship in a relational database?

I need to store maintain a table of "users" where one user can belong to many "groups". Within each group a user has a bunch of group-specific settings.
This is all very easy to achieve with a Group table, a User table and UserGroupSettings cross-reference[1] table. No problems here.
The issue I'm grappling though is how to represent an "active group" relationship between a user and the group in which they are currently "active". A user can either be inactive, or active in one group at a time. When they are inactive, their UserGroupSettings are maintained.
The obvious approach of having a nullable "active_group" column within the User table doesn't seem optimal, as the database schema wouldn't enforce the fact that a row must exist within the UserGroupSettings table for any given Group and User ID. Likewise, having a "settings_id" foreign key column in the User table wouldn't enforce that the settings row that it pointed to actually referred to the same user.
Is there an optimal solution?
https://en.wikipedia.org/wiki/Associative_entity
It sounds like you need a table of, say, user_active_group, with a foreign key that references the user's group settings.
Something along these lines . . .
-- Assumes {group_id, user_id) is unique.
create table user_group_settings (
settings_id integer primary key,
user_id integer not null,
group_id integer not null,
bunch_of_settings char(1) not null default 'X',
unique (user_id, group_id)
);
create table user_active_group (
-- This primary key constraint means each user can have only one row.
user_id integer not null primary key,
group_id integer not null,
-- This foreign key constraint means there must also be a row in user_group_settings.
foreign key (user_id, group_id) references user_group_settings (user_id, group_id)
on update cascade,
active_group varchar(5) not null
);
Cascading updates seems sensible. Cascading deletes is a little more application-dependent.

Architecture for audits

I am designing a database to capture audits that my company performs. I am having a bit of trouble finding an efficient way to capture all of the audit points without making 60 columns in a single table. Is there an efficient way to capture multiple data points in a single column and still be able to query without trouble.
Each audit may have anywhere from 0 to 60 unique citations. I will make a reference table to hold every regulatory citation, but how do I design the central table so that the 'citation' column can have , or , or any number of other combinations?
I usually try to keep auditing info in a single table.
In order to do this, I go something like this:
TABLE: Audit
**Id** (PK)
**EntityClass** (the Class, or type, or whatever you want to identify your entities by)
**EntityId** (the id of the entity in it's own table)
**PropertyChanged** (the name of the property of the entity that changed)
**OldValue** (the old value of the property)
**NewValue** (the revised value of the property)
**TimeStamp** (moment of the revision)
**RevisionType** (transaction type: Insert, Update, Delete)
This is the simplest schema, you can build on that with additional columns if you wish.
Hope this helps. Cheers!
In this example, I'm assuming, since you refer to a specific number if citations, there is -- or can be -- a taxonomic table holding 60 definitions or references, one for each kind of citation.
The Audits table contains the relevant info about each audit. I'm guessing most of this, but note there is no reference to any citation.
create table Audits(
ID int identity( 1, 1 ),
Started date,
Completed date,
CustomerID int,
AuditorID int, -- More than one possible auditor? Normalize.
VerifierID int,
Details ...,
constraint PK_Audits primary key( ID ),
constraint FK_Audits_Customer( foreign key( CustomerID )
references Customers( ID ),
constraint FK_Audits_Auditor( foreign key( AuditorID )
references Auditors( ID ),
constraint FK_Audits_Verifier( foreign key( VerifierID )
references Auditors( ID ),
constraint CK_Audits_Auditor_Verifier check( AuditorID <> VerifierID )
);
The AuditCitations table contains each citation for each audit, one entry for each citation. Note that the PK will prevent the same audit from having more than one reference to the same citation (if, of course, that is your rule).
create table AuditCitations(
AuditID int,
CitID int,
Details ...,
constraint FK_AuditCitations_Audit( foreign key( AuditID )
references Audits( ID ),
constraint FK_AuditCitations_Citation( foreign key( CitID )
references Citations( ID ),
constraint PK_AuditCitations primary key( AuditID, CitID )
);
A citation may well have its own auditor and verifier/checker or just about anything that applies to the particular citation. This example mainly just shows the relationship between the two tables.

Need help understanding this SQL (generated by doctrine)

i am actually reading Doctrine Reference: One to Many, Unidirectional with Join table. but this will probably be more of a SQL quesiton. basically, this is supposed to model a one to many, unidirectional relationship. i guess from the PHP code (in that link), its such that 1 user have many phonenumbers.
the question is from the SQL, it seems like 1 user can have many phonenumbers. and 1 phonenumber can only belong to 1 user. am i right?
CREATE TABLE User (
id INT AUTO_INCREMENT NOT NULL,
PRIMARY KEY(id)
) ENGINE = InnoDB;
CREATE TABLE users_phonenumbers (
user_id INT NOT NULL,
phonenumber_id INT NOT NULL,
UNIQUE INDEX users_phonenumbers_phonenumber_id_uniq (phonenumber_id),
PRIMARY KEY(user_id,
phonenumber_id)
) ENGINE = InnoDB;
CREATE TABLE Phonenumber (
id INT AUTO_INCREMENT NOT NULL,
PRIMARY KEY(id)
) ENGINE = InnoDB;
ALTER TABLE users_phonenumbers ADD FOREIGN KEY (user_id) REFERENCES User(id);
ALTER TABLE users_phonenumbers ADD FOREIGN KEY (phonenumber_id) REFERENCES Phonenumber(id);
can't i just simplify the database to ... below ... no need for join tables and what not?
Users (id, name)
Phonenumbers (id, user [FK], number)
Correct, these are two valid approaches to the same problem. And yes, the unique index on users_phonenumbers means that each phone number can belong to only one user.
The design is actually suboptimal.
The idea must have been that there are telephone numbers, users, and that they can be linked many-to-many. Because of the unique index on phonenumberid hoever, each number can only be assigned to one user.
Then the whole users_phonenumbers has become redundant, because they could just have added a userid column on the phonenumbers table and save themselves a join.
BAd table design if you ask me.

MySQL Lookup table and id/keys

Hoping someone can shed some light on this: Do lookup tables need their own ID?
For example, say I have:
Table users: user_id, username
Table categories: category_id, category_name
Table users_categories: user_id, category_id
Would each row in "users_categories" need an additional ID field? What would the primary key of said table be? Thanks.
You have a choice. The primary key can be either:
A new, otherwise meaningless INTEGER column.
A key made up of both user_id and category_id.
I prefer the first solution but I think you'll find a majority of programmers here prefer the second.
You could create a composite key that uses the both keys
Normally if there is no suitable key to be found in a table you want to create a either a composite key, made up of 2 or more fields,
ex:
Code below found here
CREATE TABLE topic_replies (
topic_id int unsigned not null,
id int unsigned not null auto_increment,
user_id int unsigned not null,
message text not null,
PRIMARY KEY(topic_id, id));
therefor in your case you could add code that does the following:
ALTER TABLE users_categories ADD PRIMARY KEY (user_id, category_id);
therefor once you want to reference a certain field all you would need is to pass the two PKs from your other table, however to link them they need to each be coded as a foreign key.
ALTER TABLE users_categories ADD CONSTRAINT fk_1 FOREIGN KEY (category_id) REFERENCES categories (category_id);
but if you want to create a new primary key in your users_categories table that is an option. Just know that its not always neccessary.
If your users_categories table has a unique primary key over (user_id, category_id), then - no, not necessarily.
Only if you
want to refer to single rows of that table from someplace else easily
have more than one equal user_id, category_id combination
you could benefit from a separate ID field.
Every table needs a primary key and unique ID in SQL no matter what. Just make it users_categories_id, you technically never have to use it but it has to be there.

How do you store business activities in a SQL database?

The goal is to store activities such as inserting, updating, and deleting business records.
One solution I'm considering is to use one table per record to be tracked. Here is a simplified example:
CREATE TABLE ActivityTypes
(
TypeId int IDENTITY(1,1) NOT NULL,
TypeName nvarchar(50) NOT NULL,
CONSTRAINT PK_ActivityTypes PRIMARY KEY (TypeId),
CONSTRAINT UK_ActivityTypes UNIQUE (TypeName)
)
INSERT INTO ActivityTypes (TypeName) VALUES ('WidgetRotated');
INSERT INTO ActivityTypes (TypeName) VALUES ('WidgetFlipped');
INSERT INTO ActivityTypes (TypeName) VALUES ('DingBatPushed');
INSERT INTO ActivityTypes (TypeName) VALUES ('ButtonAddedToDingBat');
CREATE TABLE Activities
(
ActivityId int IDENTITY(1,1) NOT NULL,
TypeId int NOT NULL,
AccountId int NOT NULL,
TimeStamp datetime NOT NULL,
CONSTRAINT PK_Activities PRIMARY KEY (ActivityId),
CONSTRAINT FK_Activities_ActivityTypes FOREIGN KEY (TypeId)
REFERENCES ActivityTypes (TypeId),
CONSTRAINT FK_Activities_Accounts FOREIGN KEY (AccountId)
REFERENCES Accounts (AccountId)
)
CREATE TABLE WidgetActivities
(
ActivityId int NOT NULL,
WidgetId int NOT NULL,
CONSTRAINT PK_WidgetActivities PRIMARY KEY (ActivityId),
CONSTRAINT FK_WidgetActivities_Activities FOREIGN KEY (ActivityId)
REFERENCES Activities (ActivityId),
CONSTRAINT FK_WidgetActivities_Widgets FOREIGN KEY (WidgetId)
REFERENCES Widgets (WidgetId)
)
CREATE TABLE DingBatActivities
(
ActivityId int NOT NULL,
DingBatId int NOT NULL,
ButtonId int,
CONSTRAINT PK_DingBatActivities PRIMARY KEY (ActivityId),
CONSTRAINT FK_DingBatActivities_Activities FOREIGN KEY (ActivityId)
REFERENCES Activities (ActivityId),
CONSTRAINT FK_DingBatActivities_DingBats FOREIGN KEY (DingBatId)
REFERENCES DingBats (DingBatId)
CONSTRAINT FK_DingBatActivities_Buttons FOREIGN KEY (ButtonId)
REFERENCES Buttons (ButtonId)
)
This solution seems good for fetching all activities given a widget or dingbat record id, however it doesn't seem so good for fetching all activities and then trying to determine to which record they refer.
That is, in this example, all the account names and timestamps are stored in a separate table, so it's easy to create reports focused on users and focused on time intervals without the need to know what the activity is in particular.
However, if you did want to report on the activities by type in particular, this solution would require determining to which type of activity the general activity table refers.
I could put all my activity types in one table, however the ID's would not be able to be constrained by a foreign key, instead the table name might be used as an id, which would lead me to use dynamic queries.
Note in the example that a DingBatActivity has an optional button Id. If the button name were to have been edited after being added to the dingbat, the activity would be able to refer to the button and know its name, so if a report listed all activities by dingbat and by button by name, the button name change would automatically be reflected in the activity description.
Looking for some other ideas and how those ideas compromise between programming effort, data integrity, performance, and reporting flexibility.
The way that I usually architect a solution to this problem is similar to inheritance in objects. If you have "activities" that are taking place on certain entities and you want to track those activities then the entities involved almost certainly have something in common. There's your base table. From there you can create subtables off of the base table to track things specific to that subtype. For example, you might have:
CREATE TABLE Objects -- Bad table name, should be more specific
(
object_id INT NOT NULL,
name VARCHAR(20) NOT NULL,
CONSTRAINT PK_Application_Objects PRIMARY KEY CLUSTERED (application_id)
)
CREATE TABLE Widgets
(
object_id INT NOT NULL,
height DECIMAL(5, 2) NOT NULL,
width DECIMAL(5, 2) NOT NULL,
CONSTRAINT PK_Widgets PRIMARY KEY CLUSTERED (object_id),
CONSTRAINT FK_Widgets_Objects
FOREIGN KEY (object_id) REFERENCES Objects (object_id)
)
CREATE TABLE Dingbats
(
object_id INT NOT NULL,
label VARCHAR(50) NOT NULL,
CONSTRAINT PK_Dingbats PRIMARY KEY CLUSTERED (object_id),
CONSTRAINT FK_Dingbats_Objects
FOREIGN KEY (object_id) REFERENCES Objects (object_id)
)
Now for your activities:
CREATE TABLE Object_Activities
(
activity_id INT NOT NULL,
object_id INT NOT NULL,
activity_type INT NOT NULL,
activity_time DATETIME NOT NULL,
account_id INT NOT NULL,
CONSTRAINT PK_Object_Activities PRIMARY KEY CLUSTERED (activity_id),
CONSTRAINT FK_Object_Activities_Objects
FOREIGN KEY (object_id) REFERENCES Objects (object_id),
CONSTRAINT FK_Object_Activities_Activity_Types
FOREIGN KEY (activity_type) REFERENCES Activity_Types (activity_type),
)
CREATE TABLE Dingbat_Activities
(
activity_id INT NOT NULL,
button_id INT NOT NULL,
CONSTRAINT PK_Dingbat_Activities PRIMARY KEY CLUSTERED (activity_id),
CONSTRAINT FK_Dingbat_Activities_Object_Activities
FOREIGN KEY (activity_id) REFERENCES Object_Activities (activity_id),
CONSTRAINT FK_Dingbat_Activities_Buttons
FOREIGN KEY (button_id) REFERENCES Object_Activities (button_id),
)
You can add a type code to the base activity if you want to for the type of object which it is affecting or you can just determine that by looking for existence in a subtable.
Here's the big caveat though: Make sure that the objects/activities really do have something in common which relates them and requires you to go down this path. You don't want to store disjointed, unrelated data in the same table. For example, you could use this method to create a table that holds both bank account transactions and celestial events, but that wouldn't be a good idea. At the base level they need to have something in common.
Also, I assumed that all of your activities were related to an account, which is why it's in the base table. Anything in common to ALL activities goes in the base table. Things relevant to only a subtype go in those tables. You could even go multiple levels deep, but don't get carried away. The same goes for the objects (again, bad name here, but I'm not sure what you're actually dealing with). If all of your objects have a color then you can put it in the Objects table. If not, then it would go into sub tables.
I'm going to go out on a limb and take a few wild guesses about what you're really trying to accomplish.
You say you're trying to track 'store activities' I'm going to assume you have the following activities:
Purchase new item
Sell item
Write off item
Hire employee
Pay employee
Fire employee
Update employee record
Ok, for these activities, you need a few different tables: one for inventory, one for departments, and one for employees
The inventory table could have the following information:
inventory:
item_id (pk)
description (varchar)
number_in_stock (number)
cost_wholesale (number)
retail_price (number)
dept_id (fk)
department:
dept_id (pk)
description (varchar)
employee
emp_id (pk)
first_name (varchar)
last_name (varchar)
salary (number)
hire_date (date)
fire_date (date)
So, when you buy new items, you will either update the number_in_stock in inventory table, or create a new row if it is an item you've never had before. When you sell an item, you decriment the number_in_stock for that item (also for when you write off an item).
When you hire a new employee, you add a record from them to the employees table. When you pay them, you grab their salary from the salary column. When you fire them, you fill in that column for their record (and stop paying them).
In all of this, the doing is not done by the database. SQL should be used for keeping track of information. It's fine to write procedures for doing these updates (a new invoice procedure that updates all the items from an invoice record). But you don't need a table to do stuff. In fact, a table can't do anything.
When designing a database, the question you need to ask is not "what do I need to do?" it is "What information do I need to keep track of?"
New answer, based on an different interpretation of the question.
Are you just trying to keep a list of what has happened? If you just need a ordered list of past events, you just need 1 table for it:
action_list
action_list_id (pk)
action_desc (varchar)
event_log:
event_log_id (pk)
event_time (timestamp)
action_list_id (fk)
new_action_added (fk)
action_details_or_description (varchar)
In this, the action_list would be something like:
1 'WidgetRotated'
2 'WidgetFlipped'
3 'DingBatPushed'
4 'AddNewAction'
5 'DeleteExistingAction'
The event_log would be a list of what activities happened, and when. One of your actions would be "add new action" and would require the 'new_action_added' column to be filled in on the event table anytime the action taken is "add new action".
You can create actions for update, remove, add, etc.
EDIT:
I added the action_details_or_description column to event. In this way, you can give further information about an action. For example, if you have a "product changes color" action, the description could be "Red" for the new color.
More broadly, you'll want to think through and map out all the different types of actions you'll be taking ahead of time, so you can set up your table(s) in a way that can accurately contain the data you want to put into them.
How about the SQL logs?
The last time I needed a database transaction logger I used an Instead Of trigger in the database so that it would instead of just updating the record, the database would insert a new record into the log table. This technique meant that I needed an additional table to hold the log for each table in my database and the log table had an additional column with a time stamp. Using this technique you can even store the pre and post update state of the record if you want to.