I've a set of libraries and executables all with their own CMakeLists.txt. All libraries are building their targets to the same path (for example ../build/bin and ../build/lib)... as well as exporting their header files (../build/inc).
Now I wish to build one build system and let CMake figure out the dependencies (using add_subdirectory and global build settings).
The problem is: all libraries do export their headers to build/inc after they are build (when make install in invoked). When I do a whole system build make install is not invoked until after the end (and everything has build). So for example executable progfoo with target_link_libraries( progfoo onelib ) will fail, because CMake figures out the dependency to onelib (which builds fine), but progfoo fails because it looks for headers in build/inc... which were not exported yet. The same thing in general applies to many libraries.
What is the correct CMake-Way to handle these cases? Thank you!
Install is the final step, the one that should be visible to the user. So when you export binaries and headers you should already have binaries built against headers in their original locations.
From CMake point of view you have only 1 target at a time. For example you can build a Web Server and using as dependencies libcurl and boost::asio. It is very possible (and good) to add dependencies to current target using add_subdirectory, but when you have to add include directories you have to do that on a per dependency basis, it would be convenient in example if each of the dependencies provides already a variable with current absolute path to includes.
In example see this dummy libcurl's CMakeLists.txt that set path to absolute include directory
get_filename_component(_DIR "${CMAKE_CURRENT_LIST_FILE}" PATH)
// export into parent scope libcurl header location
set (LIBCURL_INCLUDES ${_DIR}/include PARENT_SCOPE)
Then you can use it from Web Server's CMakeLists.txt for building and later use the same path again to extract files for installing them where required
add_subdirectory(PATH_TO_LIBCURL_CMAKELISTS)
# add include directories for building web server
include_directories( ${LIBCURL_INCLUDES})
#I assume you are installing headers because final user will need them,
#in case you needed them just for building you are already done here
#without even installing them
#gather headers list
file(GLOB libCurlHeadersList
"${LIBCURL_INCLUDES}/*.h"
"${LIBCURL_INCLUDES}/*.hpp"
)
#install header list
install( FILES
${libCurlHeadersList}
DESTINATION ../build/inc/libcurl
)
Related
There is a static library called revolta which is being built and then installed into a sysroot:
set( CMAKE_INSTALL_PREFIX <path to sysroot> )
# ReVolta c++ library name
set( TARGET_LIBREVOLTA "revolta" )
add_library( ${TARGET_LIBREVOLTA} STATIC )
target_include_directories( ${TARGET_LIBREVOLTA}
PUBLIC
# Once the librevolta targets are being exported, this include directory in which the lib is installed is used
$<INSTALL_INTERFACE:${CMAKE_INSTALL_PREFIX}/include>
PRIVATE
# Include directory used privately just to build the library itself
$<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
)
target_sources( ${TARGET_LIBREVOLTA}
PUBLIC
...
)
Later then once the librevolta is built, it is installed into the sys root using:
# Install all the revolta headers into include directory and copy the built library
install( TARGETS ${TARGET_LIBREVOLTA} EXPORT ${TARGET_LIBREVOLTA}
FILE_SET HEADERS DESTINATION "${CMAKE_INSTALL_PREFIX}/include"
ARCHIVE DESTINATION "${CMAKE_INSTALL_PREFIX}/lib"
)
and the connected custom command:
# Once the librevolta is built, install it to the sysroot as specified by 'install()' commands
add_custom_command( TARGET ${TARGET_LIBREVOLTA} POST_BUILD COMMAND ${CMAKE_COMMAND} ARGS --install . )
So far so good. This works as intended, once CMake builds the "revolta" target, it is built and installed into the sysroot as installed using the ${CMAKE_INSTALL_PREFIX}.
My problem is once I try to add the target as the linked one in other lib/executable, it includes somehow automatically the librevolta source path into includes and links the library using the relative path in the build directory rather than the one installed into sysroot as performed in the step right after the librevolta build.
Some other lib/executable:
target_link_libraries( ${APP_EXECUTABLE}
PRIVATE
revolta
)
Once being built, the include path -I/home/martin/git/revolta/source/librevolta is added (the source location) even though it is stated as PRIVATE in the snipped above:
PRIVATE
# Include directory used privately just to build the library itself
$<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
and only the ${CMAKE_INSTALL_PREFIX}/include is made public...
Additionally, the library is taken from the build tree rather than from the location where it is installed:
../../librevolta/librevolta.a
instead of
/home/martin/git/revolta/sysroot/lib/librevolta.a
Could you please advice me how to correctly set the revolta target the way it correctly uses its sources for building itself but once used elsewhere it provides the sysroot installed headers and built library from the same location (respecting the standard locations)?
HINT: I also tried to remove the revolta target from the app completely, specifying only to use the sys root (gcc option --sysroot=/home/martin/git/revolta/sysroot), it works fine correct headers and lib is used BUT once the librevolta is not built and installed, the target is not run prior to app build as the dependency is not defined then...
TL;DR: You need to do what's done here:
How to create a ProjectConfig.cmake file
I see a few issues with these CMakeLists.txt files but they aren't related to your problem, because if I understand correctly what you are trying to do here, then there is no problem and it is used as intended.
Let me clarify:
You have a library project that has it's own CMakeLists.txt, where you define the target revolta
You have an executable project that has it's own CMakeLists.txt, where you define your executable target and then you add the revolta target via add_subdirectory() and target_link_libraries(my_executable revolta)
If that's the case then this is just bad:
# Once the librevolta is built, install it to the sysroot as specified by 'install()' commands
add_custom_command( TARGET ${TARGET_LIBREVOLTA} POST_BUILD COMMAND ${CMAKE_COMMAND} ARGS --install . )
Forcing your build to automatically install this library is not the way to go, ever (you for example, need elevated privileges to build it in the first place, because of this command and that poses a security risk).
That being said what is happening is perfectly fine, because from the perspective of the my_executable's CMakeLists.txt you are still building i.e. you use the BUILD_INTERFACE. It is however something you do not want to do.
What instead you want to do is:
Create generator files for a revoltaConfig.cmake file. For that I will refer you to this tutorial:
How to create a ProjectConfig.cmake file
After you create such file, i.e. after building and installing revolta. You will (in the process) also create a revoltaConfig.cmake file. Which helps you populate the my_executable project via find_package(revolta).
The above is probably what you are interested in.
The generator expressions that you use to distinguish BUILD_INTERFACE and INSTALL_INTERFACE are mainly for header file locations (or other linked libraries). Because when you build the library the header files can have a different structure then when you install it (as you already know). And as such work perfectly fine in your CMakeLists.txt, because when you think about it:
You don't want to copy changes to your library files (into the install directory) just to test ongoing development (features/bugfixes) in your executable.
And during the build of the executable if your building another target then IT IS NOT INSTALLED but rather BEING BUILT. And you are most likely adding it as a built target.
So to sum up what would most likely happen here (using your old CMakeLists.txt) is that
The moment you start building the executable which adds the target library as a dependency via add_subdirectory you are implicitly using BUILD_INTERFACE because you are building.
If you were to then install both the executable and the library it would again use the correct install paths, i.e. you would then implicitly start using INSTALL_INTERFACE.
You could hack it without the projectConfig file using the same generator expressions by mixing them up, but I don't recommend it, because then the CMakeLists.txt wouldn't work without doing some weird steps beforehand.
I am trying to use the assimp library in a cross platform C++ project. I include the repo as a git submodule, so, effectively, if someone downloads my project they will also download the ASSIMP project.
After I go through the assimp build / CMAKE instructions and (on Linux) type make install and from then on in my project I can use:
target_link_libraries(${PROJECT_NAME} assimp)
However, there is no make install on Windows.
The only other way I have been able to include the library on Linux is to put (in my CmakeLists.txt file):
target_link_libraries(${PROJECT_NAME} ${CMAKE_SOURCE_DIR}/build/assimp/code/libassimp.so)
This is not cross platform as it hardcodes the name and location of the .so file which will not work on Windows.
How can I expose the library so that I can do something like target_link_libraries(${PROJECT_NAME} assimp) on all platforms?
My directory tree looks like:
- src
- include
- assimp
- bin
Where the assimp directory in the include directory is the git submodule
I think you're going about this the wrong way. You don't need to build assimp in a separate step from your project, and you don't need to make install to make it available.
There are a number of ways of handling third party dependencies in Cmake, since you've already chosen to submodule the assimp repository, we'll start there. Assuming assimp is located in the root of your repository in a directory called assimp/ this would be a barebones project including it:
cmake_minimum_required(VERSION 3.0)
project(Project myassimpproj)
# include your directories
include_directories(
${CMAKE_CURRENT_SOURCE_DIR}
)
# set any variables you might need to set for your app and assimp
set(BUILD_ASSIMP_TOOLS ON)
set(ASSIMP_BUILD_STATIC_LIB ON)
# add assimp source dir as a subdirectory, effectively making
# assimp's CMakeLists.txt part of your build
add_subdirectory(/path/to/assimp ${CMAKE_BINARY_DIR}/assimp)
add_executable(assimp_target main.cpp)
# be sure to link in assimp, use platform-agnostic syntax for the linker
target_link_libraries(assimp_target assimp)
There may be a better way of phrasing this using generator expressions syntax, but I haven't looked at assimp's CMakeLists.txt to know if it's supported (and this is a more generic way anyway.)
Not every project uses Cmake, so you may not be able to just add_subdirectory(). In those cases, you can effectively "fake" a user call to build them using their build commands on respective platforms. execute_process() runs a command at configure time add_custom_command() and add_custom_target() run commands at build time. You then create a fake target to make integration and cross your fingers they support Cmake someday.
You can also use the ExternalProject commands added to Cmake to create a custom target to drive download, update/patch, configure, build, install and test steps of an external project, but note that this solution and the next download the dependency rather than using the submodule'd source code.
Finally, I prefer to work with prebuilt dependencies, cuts down on build time, and they can be unit tested on their own outside of the project. Conan is an open source, decentralized and multi-platform package manager with very good support for C++ and almost transparent support for Cmake when used the right way. They have grown very stable in the last year. More information on how to use Conan with Cmake can be found here.
I have the following problem: I build an SDK using CMake. During the build process a public header file that is later shipped to clients gets generated by a custom_target. This header file is needed by client applications thus also example applications that are shipped as part of the SDK. Within my build system therefore example applications currently express the dependency to the target generating the header so that it gets generated before trying to build the example application:
set(TARGET MyExample)
set(SOURCES ${TARGET}.cpp)
add_executable(${TARGET} ${SOURCES})
add_dependencies(${TARGET} InterfaceHeaderGenerator)
# ... more code
Now on a client system the file generated by the 'InterfaceGenerator' of course is already present and therefore this dependency is invalid.
I am searching for a way to be able to ship my CMake files to a customer in a way he can use them without maintaining 2 different copies of CMakeLists.txt files for 'development' and 'client' mode.
I am aware this could probably be solved using generator expressions in connection with CPack. However CPack I cannot use because it lacks another feature I need: Being able to ship and install THE SAME target in several packages.
Is that possible at all?
Guard this add_dependency() call with if(BUILDING_SDK) and have this variable set to OFF by default and ON in your case.
I'm making two rpms with CPack using its component feature. I want one to have .so files and the other to have all header files. I couldn't find any similar questions regarding packaging files in the component feature.
(DEVEL" is the component for my devel rpm)
Right now I have set(CPACK_RPM_DEVEL_INSTALL_FILES path/../file1
...
path/../file2)
just with all my files separated by returns but that does not work at all. What is the correct statement to provide a list of files I need in the rpm?
Currently it produces 3 rpms (I assume the third will just be a complete one with all files which I'm fine generating and not using). Two of the rpms have every file in the repo in them and the third just has two CMake files in it.
cpack_add_component(DEVEL)
//Skipping version, description, name, setting source_dir...
set(CPACK_RPM_COMPONENT_INSTALL ON)
set(CPACK_COMPONENTS_IGNORE_GROUPS 1)
set(CPACK_COMPONENTS_GROUPING ONE_PER_GROUP)
set(CPACK_COMPONENT_DEVEL_DISPLAY_NAME "devel")
set(CPACK_RPM_DEVEL_INSTALL_FILES "/usr/include/opentracing/noop.h
...
/usr/include/opentracing/version.h")
set(CPACK_COMPONENT_DIST_REQUIRED TRUE)
set(CPACK_COMPONENT_DEVEL_REQUIRED TRUE)
set(CPACK_COMPONENTS_ALL DIST DEVEL)
I am calling this from linux command line with cpack -G rpm
In your CMakelists.txt, add something like:
install(TARGETS outputfiles... RUNTIME DESTINATION bin LIBRARY DESTINATION lib)
Then you can use
make package
in your build directory.
I am working on a larger C++ library that is using CMake and depends on Qt.
We moved from Qt4 to Qt5 and now I encounter a problem when using our lib
in an upstream project. As a minimal working example demonstrating the problem please have a look at this repo:
https://github.com/philthiel/cmake_qt5_upstream
It contains two separate CMake projects:
MyLIB: a tiny library that uses QString from Qt5::Core.
It generates and installs package configuration files
MyLIBConfig.cmake, MyLIBConfigVersion.cmake, and MyLIBTargets.cmake
in order to be searchable by CMake find_package()
MyAPP: a tiny executable depending on MyLIB
The project uses find_package(MyLIB) and creates an executable that uses MyLIB
The problem is that CMake gives me the following error message when configuring the MyAPP project:
CMake Error at CMakeLists.txt:11 (add_executable):
Target "MyAPP" links to target "Qt5::Core" but the target was not found.
Perhaps a find_package() call is missing for an IMPORTED target, or an
ALIAS target is missing?
The reason for this behaviour is that in the automatically generated MyLIBTargets.cmake file the INTERFACE_LINK_LIBRARIES entry for Qt5 Core is the Qt5::Core symbol. Using Qt4, the absolute path to the Qt core lib was specified here.
Now, I simply can resolve this by using
find_package(Qt5Core 5.X REQUIRED)
in the MyAPP project.
However, I would like to know if this is the intended/generic way to go, i.e. requesting upstream projects of our lib to search for the required transitive Qt5 dependencies themselves, or if I probably misuse CMake here and need to change my configuration procedure?
The CMake docu on package file generation
https://cmake.org/cmake/help/v3.0/manual/cmake-packages.7.html
mentions that macros can be provided by the package configuration files to upstream. Maybe this would be the correct place to search for imported targets like Qt5 and break upstream configuration runs when these dependencies are not found?
Best,
Philipp
[edit of the edit] Full Source Example
You need to deliver a CMake config file for your project, and probably the ConfigFile should be generated via CMake itself (because you cannot know for shure where the user will install your software).
Tip, use the ECM cmake modules to ease the creation of that:
find_package(ECM REQUIRED NO_MODULE)
include(CMakePackageConfigHelpers)
ecm_setup_version(${PROJECT_VERSION}
VARIABLE_PREFIX ATCORE
VERSION_HEADER "${CMAKE_CURRENT_BINARY_DIR}/atcore_version.h"
PACKAGE_VERSION_FILE "${CMAKE_CURRENT_BINARY_DIR}/KF5AtCoreConfigVersion.cmake"
SOVERSION 1
)
configure_package_config_file("${CMAKE_CURRENT_SOURCE_DIR}/KF5AtCoreConfig.cmake.in"
"${CMAKE_CURRENT_BINARY_DIR}/KF5AtCoreConfig.cmake"
INSTALL_DESTINATION ${CMAKECONFIG_INSTALL_DIR}
)
and the KF5AtCoreConfig.cmake.in:
#PACKAGE_INIT#
find_dependency(Qt5Widgets "#REQUIRED_QT_VERSION#")
find_dependency(Qt5SerialPort "#REQUIRED_QT_VERSION#")
find_dependency(KF5Solid "#KF5_DEP_VERSION#")
include("${CMAKE_CURRENT_LIST_DIR}/KF5AtCoreTargets.cmake")
This will generate the correct FindYourSortware.cmake with all your dependencies.
[edit] Better explanation on what's going on.
If you are providing a library that will use Qt, and that would also need to find the Qt5 library before compilling the user's source, you need to provide yourself a FindYourLibrary.cmake code, that would call
find_package(Qt5 REQUIRED COMPONENTS Core Gui Widgets Whatever)
Now, if it's your executable that needs to be linked, use the Components instead of the way you are doing it now.
find_package(Qt5 REQUIRED COMPONENTS Core)
then you link your library with
target_link_libraries(YourTarget Qt5::Core)