Distributed Locking for Device - locking

We have distributed cluster weblogic setup.
Our Use Case was whenever Device Contact our system need to compute Parameter and provision to the device. There can be concurrent request from devices. We cant reject any request from devices.So we are going with Async Processing approach.
Here problem we are facing is whenever device contacts we need to lock the source device as well as neighbor devices to provision optimized parameter.
Since we have cluster system, we require a distributed locking system which provides high performance.
Could you suggest us any framework/suggestion in java for distributed locking which suits to our requirement ?
Regards,
Sakumar

Typically, when you sense a need for distributed locking, that indicates a design flaw. Distributed locking is usually either slow or unsafe. It's slow when done correctly because strong consistency guarantees are required to ensure two processes can't hold the same lock at the same time, and unsafe when consistency constraints are relaxed in favor of performance gains.
Often you can find a better solution than distributed locking by doing something like consistent hashing to ensure related requests are handled by the same process. Similarly, leader election can be a more performant alternative to distributed locking if you can elect a leader and route related requests to the leader. But certainly there must be some cases where these solutions are not possible, and so I'd better answer your question...
Assuming fault tolerance is a requirement, and considering the performance and safety concerns mentioned above, Hazelcast may be a good option for your use case. It's a fast embedded in-memory data grid that has a distributed Lock implementation. Often it's nice to use an embedded system like Hazelcast rather than relying on another cluster, but Hazelcat does have the potential for consistency issues in certain partition scenarios, and that could result in two processes acquiring a lock. TBH I've heard more than a few complaints about locks in Hazelcast, but no doubt others have had positive experiences.
Alternatively, ZooKeeper is likely the most common system for distributed locking in Java. However, ZooKeeper tends to be significantly slower for writes than reads since its quorum based - though it is relatively fast and very mature - and locking is a write-heavy work load. Also, in contrast to Hazelcast, one major downside to ZooKeeper is that it's a separate cluster and thus a dependency on another external system. I think ZooKeeper's stability and maturity makes it worth a look.
There doesn't currently seem to be many proven projects in between Hazelcast (an embedded eventually strongly consistent framework) and ZooKeeper (a strongly consistent external service) which is why (disclaimer: self promotion incoming) I created Atomix to provide safe distributed locking and leader elections as an embedded system for Java. It's a decent option if you need a framework like Hazelcast that has the same (actually stronger) consistency guarantees as ZooKeeper.
If performance and scalability is paramount and you're expecting high rates of requests, you will likely have to sacrifice consistency and look at a Hazelcast or something similar.
Alternatively, if fault tolerance is not a requirement (I don't think you spshould cities that it is) you can even just use a Redis instance :-)

Related

Should I try to use as many queues as possible?

On my machine I have two queue families, one that supports everything and one that only supports transfer.
The queue family that supports everything has a queueCount of 16.
Now the spec states
Command buffers submitted to different queues may execute in parallel or even out of order with respect to one another
Does that mean I should try to use all available queues for maximal performance?
Yes, if you have workload that is highly independent use separate queues.
If the queues need a lot of synchronization between themselves, it may kill any potential benefit you may get.
Basically what you are doing is supplying GPU with some alternative work it can do (and fill stalls and bubbles and idles with and giving GPU the choice) in the case of same queue family. And there is some potential to better use CPU (e.g. singlethreaded vs one queue per thread).
Using separate transfer queues (or other specialized family) seem to be the recommended approach even.
That is generally speaking. More realistic, empirical, sceptical and practical view was already presented by SW and NB answers. In reality one does have to be bit more cautious as those queues target the same resources, have same limits, and other common restrictions, limiting potential benefits gained from this. Notably, if the driver does the wrong thing with multiple queues, it may be very very bad for cache.
This AMD's Leveraging asynchronous queues for concurrent execution(2016) discusses a bit how it maps to their HW\driver. It shows potential benefits of using separate queue families. It says that although they offer two queues of compute family, they did not observe benefits in apps at that time. They say they have only one graphics queue, and why.
NVIDIA seems to have a similar idea of "asynch compute". Shown in Moving to Vulkan: Asynchronous compute.
To be safe, it seems we should still stick with only one graphics, and one async compute queue though on current HW. 16 queues seem like a trap and a way to hurt yourself.
With transfer queues it is not as simple as it seems either. You should use the dedicated ones for Host->Device transfers. And the non-dedicated should be used for device->device transfer ops.
To what end?
Take the typical structure of a deferred renderer. You build your g-buffers, do your lighting passes, do some post-processing and tone mapping, maybe throw in some transparent stuff, and then present the final image. Each process depends on the previous process having completed before it can begin. You can't do your lighting passes until you've finished your g-buffer. And so forth.
How could you parallelize that across multiple queues of execution? You can't parallelize the g-buffer building or the lighting passes, since all of those commands are writing to the same attached images (and you can't do that from multiple queues). And if they're not writing to the same images, then you're going to have to pick a queue in which to combine the resulting images into the final one. Also, I have no idea how depth buffering would work without using the same depth buffer.
And that combination step would require synchronization.
Now, there are many tasks which can be parallelized. Doing frustum culling. Particle system updates. Memory transfers. Things like that; data which is intended for the next frame. But how many queues could you realistically keep busy at once? 3? Maybe 4?
Not to mention, you're going to need to build a rendering system which can scale. Vulkan does not require that implementations provide more than 1 queue. So your code needs to be able to run reasonably on a system that only offers one queue as well as a system that offers 16. And to take advantage of a 16 queue system, you might need to render very differently.
Oh, and be advised that if you ask for a bunch of queues, but don't use them, performance could be impacted. If you ask for 8 queues, the implementation has no choice but to assume that you intend to be able to issue 8 concurrent sets of commands. Which means that the hardware cannot dedicate all of its resources to a single queue. So if you only ever use 3 of them... you may be losing over 50% of your potential performance to resources that the implementation is waiting for you to use.
Granted, the implementation could scale such things dynamically. But unless you profile this particular case, you'll never know. Oh, and if it does scale dynamically... then you won't be gaining a whole lot from using multiple queues like this either.
Lastly, there has been some research into how effective multiple queue submissions can be at keeping the GPU fed, on several platforms (read all of the parts). The general long and short of it seems to be that:
Having multiple queues executing genuine rendering operations isn't helpful.
Having a single rendering queue with one or more compute queues (either as actual compute queues or graphics queues you submit compute work to) is useful at keeping execution units well saturated during rendering operations.
That strongly depends on your actual scenario and setup. It's hard to tell without any details.
If you submit command buffers to multiple queues you also need to do proper synchronization, and if that's not done right you may get actually worse performance than just using one queue.
Note that even if you submit to only one queue an implementation may execute command buffers in parallel and even out-of-order (aka "in-flight"), see details on this in chapter chapter 2.2 of the specs or this AMD presentation.
If you do compute and graphics, using separate queues with simultaneous submissions (and a synchronization) will improve performance on hardware that supports async compute.
So there is no definitive yes or no on this without knowing about your actual use case.
Since you can submit multiple independent workload in the same queue, and it doesn't seem there is any implicit ordering guarantee among them, you don't really need more than one queue to saturate the queue family. So I guess the sole purpose of multiple queues is to allow for different priorities among the queues, as specified during device creation.
I know this answer is in direct contradiction to the accepted answer, but that answer fails to address the issue that you don't need more queues to send more parallel work to the device.

How does Redis achieve the high throughput and performance?

I know this is a very generic question. But, I wanted to understand what are the major architectural decision that allow Redis (or caches like MemCached, Cassandra) to work at amazing performance limits.
How are connections maintained?
Are connections TCP or HTTP?
I know that it is completely written in C. How is the memory managed?
What are the synchronization techniques used to achieve high throughput inspite
of competing read/writes?
Basically, what is the difference between a plain vanilla implementation of a machine with in memory cache and server that can respond to commands and a Redis box? I also understand that the answer needs to be very huge and should include very complex details for completion. But, what I'm looking for are some general techniques used rather than all nuances.
There is a wealth of of information in the Redis documentation to understand how it works. Now, to answer specifically your questions:
1) How are connections maintained?
Connections are maintained and managed using the ae event loop (designed by the Redis author). All network I/O operations are non blocking. You can see ae as a minimalistic implementation using the best network I/O demultiplexing mechanism of the platform (epoll for Linux, kqueue for BSD, etc ...) just like libevent, libev, libuv, etc ...
2) Are connections TCP or HTTP?
Connections are TCP using the Redis protocol, which is a simple telnet compatible, text oriented protocol supporting binary data. This protocol is typically more efficient than HTTP.
3) How is the memory managed?
Memory is managed by relying on a general purpose memory allocator. On some platforms, this is actually the system memory allocator. On some other platforms (including Linux), jemalloc has been selected since it offers a good balance between CPU consumption, concurrency support, fragmentation and memory footprint. jemalloc source code is part of the Redis distribution.
Contrary to other products (such as memcached), there is no implementation of a slab allocator in Redis.
A number of optimized data structures have been implemented on top of the general purpose allocator to reduce the memory footprint.
4) What are the synchronization techniques used to achieve high throughput inspite of competing read/writes?
Redis is a single-threaded event loop, so there is no synchronization to be done since all commands are serialized. Now, some threads also run in the background for internal purposes. In the rare cases they access the data managed by the main thread, classical pthread synchronization primitives are used (mutexes for instance). But 100% of the data accesses made on behalf of multiple client connections do not require any synchronization.
You can find more information there:
Redis is single-threaded, then how does it do concurrent I/O?
What is the difference between a plain vanilla implementation of a machine with in memory cache and server that can respond to commands and a Redis box?
There is no difference. Redis is a plain vanilla implementation of a machine with in memory cache and server that can respond to commands. But it is an implementation which is done right:
using the single threaded event loop model
using simple and minimalistic data structures optimized for their corresponding use cases
offering a set of commands carefully chosen to balance minimalism and usefulness
constantly targeting the best raw performance
well adapted to modern OS mechanisms
providing multiple persistence mechanisms because the "one size does fit all" approach is only a dream.
providing the building blocks for HA mechanisms (replication system for instance)
avoiding stacking up useless abstraction layers like pancakes
resulting in a clean and understandable code base that any good C developer can be comfortable with

zookeeper vs redis server sync

I have a small cluster of servers I need to keep in sync. My initial thought on this was to have one server be the "master" and publish updates using redis's pub/sub functionality (since we are already using redis for storage) and letting the other servers in the cluster, the slaves, poll for updates in a long running task. This seemed to be a simple method to keep everything in sync, but then I thought of the obvious issue: What if my "master" goes down? That is where I started looking into techniques to make sure there is always a master, which led me to reading about ideas like leader election. Finally, I stumbled upon Apache Zookeeper (through python binding, "pettingzoo"), which apparently takes care of a lot of the fault tolerance logic for you. I may be able to write my own leader selection code, but I figure it wouldn't be close to as good as something that has been proven and tested, like Zookeeper.
My main issue with using zookeeper is that it is just another component that I may be adding to my setup unnecessarily when I could get by with something simpler. Has anyone ever used redis in this way? Or is there any other simple method I can use to get the type of functionality I am trying to achieve?
More info about pettingzoo (slideshare)
I'm afraid there is no simple method to achieve high-availability. This is usually tricky to setup and tricky to test. There are multiple ways to achieve HA, to be classified in two categories: physical clustering and logical clustering.
Physical clustering is about using hardware, network, and OS level mechanisms to achieve HA. On Linux, you can have a look at Pacemaker which is a full-fledged open-source solution coming with all enterprise distributions. If you want to directly embed clustering capabilities in your application (in C), you may want to check the Corosync cluster engine (also used by Pacemaker). If you plan to use commercial software, Veritas Cluster Server is a well established (but expensive) cross-platform HA solution.
Logical clustering is about using fancy distributed algorithms (like leader election, PAXOS, etc ...) to achieve HA without relying on specific low level mechanisms. This is what things like Zookeeper provide.
Zookeeper is a consistent, ordered, hierarchical store built on top of the ZAB protocol (quite similar to PAXOS). It is quite robust and can be used to implement some HA facilities, but it is not trivial, and you need to install the JVM on all nodes. For good examples, you may have a look at some recipes and the excellent Curator library from Netflix. These days, Zookeeper is used well beyond the pure Hadoop contexts, and IMO, this is the best solution to build a HA logical infrastructure.
Redis pub/sub mechanism is not reliable enough to implement a logical cluster, because unread messages will be lost (there is no queuing of items with pub/sub). To achieve HA of a collection of Redis instances, you can try Redis Sentinel, but it does not extend to your own software.
If you are ready to program in C, a HA framework which is often forgotten (but can be quite useful IMO) is the one coming with BerkeleyDB. It is quite basic but support off-the-shelf leader elections, and can be integrated in any environment. Documentation can be found here and here. Note: you do not have to store your data with BerkeleyDB to benefit from the HA mechanism (only the topology data - the same ones you would put in Zookeeper).

Replicated message queue

I am looking for a message queue which would replicate messages across a cluster of servers. I am aware that this will cause a performance hit, but that's what the requirements are - message persistence is very important.
The replication can be asynchronous, but it should be there - if there's a large backlog of messages waiting for processing, they shouldn't be lost.
So far I didn't manage to find anything from the well-known MQs. HornetQ for example supported message replication in 2.0 but in 2.2 it seems to be removed. RabbitMQ doesn't replicate messages at all, etc.
Is there anything out there that could meet my requirements?
There are at least three ways of tackling this that come to mind, depending upon how robust you need the solution to be.
One: pick any messaging tech, then replicate your disk-storage. Using something like DRBD you can have the file-backed storage copied to another machine under the covers. If your primary box dies, you should be able to restart on your second machine from the replicated files.
Two: Keep looking. There are various commercial systems that definitely do this, two such (no financial benefit on my part) are Informatica Ultra Messaging (formerly 29West) and Solace. These are commonly used in the financial community.
Three: build your own. ZeroMQ is one such toolkit that you could use to roll-your-own system from pre-built messaging blocks. Even a system that does not officially support it could fairly easily be configured to publish all messages to two queues. Your reader would have to drain both somehow, so this may well be a non-starter, but possible in any case.
Overall: do test your performance assumptions, as all of these will have various performance implications in various scenarios.
Amazon SQS is designed with this very thing in mind, but because of the consistency model (which is a part of messaging anyway), you're responsible for de-duplicating messages on the consumer side. Granted, SQS maybe somewhat slow and the costs can add up for lots of messages, but if you want to guarantee that no messages are lost, then it's a pretty solid way to go.
new Kafka 0.8.1 offers replication!

Spread vs MPI vs zeromq?

In one of the answers to Broadcast like UDP with the Reliability of TCP, a user mentions the Spread messaging API. I've also run across one called ØMQ. I also have some familiarity with MPI.
So, my main question is: why would I choose one over the other? More specifically, why would I choose to use Spread or ØMQ when there are mature implementations of MPI to be had?
MPI was deisgned tightly-coupled compute clusters with fast, reliable networks. Spread and ØMQ are designed for large distributed systems. If you're designing a parallel scientific application, go with MPI, but if you are designing a persistent distributed system that needs to be resilient to faults and network instability, use one of the others.
MPI has very limited facilities for fault tolerance; the default error handling behavior in most implementations is a system-wide fail. Also, the semantics of MPI require that all messages sent eventually be consumed. This makes a lot of sense for simulations on a cluster, but not for a distributed application.
I have not used any of these libraries, but I may be able to give some hints.
MPI is a communication protocol while Spread and ØMQ are actual implementation.
MPI comes from "parallel" programming while Spread comes from "distributed" programming.
So, it really depends on whether you are trying to build a parallel system or distributed system. They are related to each other, but the implied connotations/goals are different. Parallel programming deals with increasing computational power by using multiple computers simultaneously. Distributed programming deals with reliable (consistent, fault-tolerant and highly available) group of computers.
The concept of "reliability" is slightly different from that of TCP. TCP's reliability is "give this packet to the end program no matter what." The distributed programming's reliability is "even if some machines die, the system as a whole continues to work in consistent manner." To really guarantee that all participants got the message, one would need something like 2 phase commit or one of faster alternatives.
You're addressing very different APIs here, with different notions about the kind of services provided and infrastructure for each of them. I don't know enough about MPI and Spread to answer for them, but I can help a little more with ZeroMQ.
ZeroMQ is a simple messaging communication library. It does nothing else than send a message to different peers (including local ones) based on a restricted set of common messaging patterns (PUSH/PULL, REQUEST/REPLY, PUB/SUB, etc.). It handles client connection, retrieval, and basic congestion strictly based on those patterns and you have to do the rest yourself.
Although appearing very restricted, this simple behavior is mostly what you would need for the communication layer of your application. It lets you scale very quickly from a simple prototype, all in memory, to more complex distributed applications in various environments, using simple proxies and gateways between nodes. However, don't expect it to do node deployment, network discovery, or server monitoring; You will have to do it yourself.
Briefly, use zeromq if you have an application that you want to scale from the simple multithread process to a distributed and variable environment, or that you want to experiment and prototype quickly and that no solutions seems to fit with your model. Expect however to have to put some effort on the deployment and monitoring of your network if you want to scale to a very large cluster.