What's the difference between an object and a data object? - singleton

The other day I noticed that I sometimes put data in front of objects and other times not:
object A
data object B
What's the difference between an object and a data object?

The fact that data is allowed on an object declaration is in fact a bug (KT-6486) which should be fixed.
data is an annotation which causes the compiler to generate equals, hashCode, toString, copy and componentN functions. It doesn't make much sense when applied to an object declaration for two reasons:
An object declaration cannot have a constructor, and all these functions work based on properties defined in the primary constructor.
There's only one instance of any object at runtime.
So no componentN functions would be generated, copy can't work, and the generated equals/hashCode/toString implementations will be equivalent to the default ones from Any which are based on identity.

Related

Why does lateinit work on Object type but not primitive type?

This answer says that Object types use the null value on lateinits of Object type. Can someone elaborate on this? What do they mean by "uses the null value"?
Furthermore it says "For primitive types, there is no such value" - why is there no
On the JVM, which was historically the first platform targeted by Kotlin, there is a distinction between the primitive types and classes, or object types.
They have different runtime representations: a primitive value is stored directly in the field, which can only hold one of the corresponding primitive type values (e.g. only true and false for boolean) and has no special representation for a missing value. In comparison, a class-typed field stores an indirect reference to an instance that is allocated somewhere in the heap, and a class-typed field can hold a special null reference that doesn't point to any instance.
The Kotlin lateinit properties are compiled to a single field and they internally use the null value to indicate that the property has not yet been initialized. As primitive-typed JVM fields can't have a null value, Kotlin doesn't allow lateinit properties of types that are normally mapped to Java primitives, as that would require a different representation, and no acceptable solution existed, as the other answer says.
Instead, you can use by Delegates.notNull() to achieve similar behavior with the mapped types.

Combine JsonDeserialize#contentAs with JsonDeserialize#contentConverter or JsonDeserialize#contentUsing for custom deserialization

In JsonDeserialize annotation documentation the contentAs field is supposed to define the "Concrete type to deserialize content".
I tried to use this in combination, with either a Converter (via contentConverter field of the same annotation) or a JsonDeserializer (via contentUsing field of the same annotation), by extending either StdConverter or StdDeserializer, respectively, in an attempt to create an agnostic custom deserializer.
I cannot find a way to access the JsonDeserialize#contentAs information inside any of these two classes.
I am aware that the classes I extend from have a type parameter, I just put an Object class there. Documentation states
contentAs Concrete type to deserialize content (elements of a Collection/array, values of Maps) values as, instead of type otherwise declared. Must be a subtype of declared type; otherwise an exception may be thrown by deserializer.
Apparently I am applying the #JsonDeserializer annotation on a Collection of some persistable Class. I want to deserialize each such object, solely by knowing its id. Well, if I could only get that very type I defined in the #JsonDeserializer#contentAs field...
Can anyone tell me if this is possible anyhow?
I managed to implement the agnostic deserializer withou the use of #JsonDeserializer#contentAs after all.
After reading the javadocs of com.fasterxml.jackson.databind.JsonDeserializer I concluded that my custom deserializer should implement the com.fasterxml.jackson.databind.deser.ContextualDeserializer interface.
Inside the implementation of ContextualDeserializer#createContextual(DeserializationContext ctxt, BeanProperty property)
I could finally get access to the class type of the content of the collection, which I applied the #JsonDeserialize annotation on,
by calling:
ctxt.getContextualType().getRawClass()
NOTE that the same call inside the implementation of com.fasterxml.jackson.databind.JsonDeserializer#deserialize(com.fasterxml.jackson.core.JsonParser, com.fasterxml.jackson.databind.DeserializationContext) returned null, hence the need of the aforementioned interface.
All I had to do then is store the returned class in a member field (of type Class< ? >) of the custom deserializer and use it in the execution of JsonDeserializer#deserialize()
The only thing that remains to check is whether an instance of this custom deserializer is shared between threads. I only did some minor checks; I used the same implementation for two different collections of different types. I observed that ContextualDeserializer#createContextual(DeserializationContext ctxt, BeanProperty property) was called once (among multiple deserialization invokations), for each distinct type that was going to be deserialized. After checking during debugging, it seems that the same deserializer object is used for the same type. In my case, since what I store in the member field is this type itself, I don't mind if the same deserializer is used for the same java type to be deserialized because they should contain the same value. So we 're clear on this aspect as well.
EDIT: It appears all I have to do is update the com.fasterxml.jackson.databind.deser.std.StdDeserializer#_valueClass value to the now known class. Since it is final and since the ContextualDeserializer#createContextual(DeserializationContext ctxt, BeanProperty property) returns a JsonSerializer object, which is actually used,
instead of returning "this" serializer I can create a new one, passing the discovered class in the constructor, which actually sets the StdDeserializer#_valueClass to the class I actually want, and I'm all set!
Finally, NOTE that I didn't have to use the #JsonDeserializer#contentAs annotationfield as I get the value from the ctxt.getContextualType().getRawClass() statement inside ContextualDeserializer#createContextual(DeserializationContext ctxt, BeanProperty property) implementation

Differences between Function that returns a string and read only string property [duplicate]

I need to expose the "is mapped?" state of an instance of a class. The outcome is determined by a basic check. It is not simply exposing the value of a field. I am unsure as to whether I should use a read-only property or a method.
Read-only property:
public bool IsMapped
{
get
{
return MappedField != null;
}
}
Method:
public bool IsMapped()
{
return MappedField != null;
}
I have read MSDN's Choosing Between Properties and Methods but I am still unsure.
The C# standard says
§ 8.7.4
A property is a member that provides access to a characteristic of an object or a class. Examples of properties include the length of a string, the size of a font, the caption of a window, the name of a customer, and so on. Properties are a natural extension of fields. Both are named members with associated types, and the syntax for accessing fields and properties is the same. However, unlike fields, properties do not denote storage locations. Instead, properties have accessors that specify the statements to be executed when their values are read or written.
while as methods are defined as
§ 8.7.3
A method is a member that implements a computation or action that can be performed by an object or class. Methods have a (possibly empty) list of formal parameters, a return value (unless the method’s return-type is void ), and are either static or non-static.
Properties and methods are used to realize encapsulation. Properties encapsulate data, methods encapsulate logic. And this is why you should prefer a read-only property if you are exposing data. In your case there is no logic that modifies the internal state of your object. You want to provide access to a characteristic of an object.
Whether an instance of your object IsMapped or not is a characteristic of your object. It contains a check, but that's why you have properties to access it. Properties can be defined using logic, but they should not expose logic. Just like the example mentioned in the first quote: Imagine the String.Length property. Depending on the implementation, it may be that this property loops through the string and counts the characters. It also does perform an operation, but "from the outside" it just give's an statement over the internal state/characteristics of the object.
I would use the property, because there is no real "doing" (action), no side effects and it's not too complex.
I personally believe that a method should do something or perform some action. You are not performing anything inside IsMapped so it should be a property
I'd go for a property. Mostly because the first senctence on the referenced MSDN-article:
In general, methods represent actions and properties represent data.
In this case it seems pretty clear to me that it should be a property. It's a simple check, no logic, no side effects, no performance impact. It doesn't get much simpler than that check.
Edit:
Please note that if there was any of the above mentioned and you would put it into a method, that method should include a strong verb, not an auxiliary verb like is or has. A method does something. You could name it VerifyMapping or DetermineMappingExistance or something else as long as it starts with a verb.
I think this line in your link is the answer
methods represent actions and properties represent data.
There is no action here, just a piece of data. So it's a Property.
In situations/languages where you have access to both of these constructs, the general divide is as follows:
If the request is for something the object has, use a property (or a field).
If the request is for the result of something the object does, use a method.
A little more specifically, a property is to be used to access, in read and/or write fashion, a data member that is (for consuming purposes) owned by the object exposing the property. Properties are better than fields because the data doesn't have to exist in persistent form all the time (they allow you to be "lazy" about calculation or retrieval of this data value), and they're better than methods for this purpose because you can still use them in code as if they were public fields.
Properties should not, however, result in side effects (with the possible, understandable exception of setting a variable meant to persist the value being returned, avoiding expensive recalculation of a value needed many times); they should, all other things being equal, return a deterministic result (so NextRandomNumber is a bad conceptual choice for a property) and the calculation should not result in the alteration of any state data that would affect other calculations (for instance, getting PropertyA and PropertyB in that order should not return any different result than getting PropertyB and then PropertyA).
A method, OTOH, is conceptually understood as performing some operation and returning the result; in short, it does something, which may extend beyond the scope of computing a return value. Methods, therefore, are to be used when an operation that returns a value has additional side effects. The return value may still be the result of some calculation, but the method may have computed it non-deterministically (GetNextRandomNumber()), or the returned data is in the form of a unique instance of an object, and calling the method again produces a different instance even if it may have the same data (GetCurrentStatus()), or the method may alter state data such that doing exactly the same thing twice in a row produces different results (EncryptDataBlock(); many encryption ciphers work this way by design to ensure encrypting the same data twice in a row produces different ciphertexts).
If at any point you'll need to add parameters in order to get the value, then you need a method. Otherwise you need a property
IMHO , the first read-only property is correct because IsMapped as a Attribute of your object, and you're not performing an action (only an evaluation), but at the end of the day consistancy with your existing codebase probably counts for more than semantics.... unless this is a uni assignment
I'll agree with people here in saying that because it is obtaining data, and has no side-effects, it should be a property.
To expand on that, I'd also accept some side-effects with a setter (but not a getter) if the side-effects made sense to someone "looking at it from the outside".
One way to think about it is that methods are verbs, and properties are adjectives (meanwhile, the objects themselves are nouns, and static objects are abstract nouns).
The only exception to the verb/adjective guideline is that it can make sense to use a method rather than a property when obtaining (or setting) the information in question can be very expensive: Logically, such a feature should probably still be a property, but people are used to thinking of properties as low-impact performance-wise and while there's no real reason why that should always be the case, it could be useful to highlight that GetIsMapped() is relatively heavy perform-wise if it in fact was.
At the level of the running code, there's absolutely no difference between calling a property and calling an equivalent method to get or set; it's all about making life easier for the person writing code that uses it.
I would expect property as it only is returning the detail of a field. On the other hand I would expect
MappedFields[] mf;
public bool IsMapped()
{
mf.All(x => x != null);
}
you should use the property because c# has properties for this reason

Swift: Computed type properties in classes

I'm trying to understand something about type properties in swift.
The Swift Programming Language says
For classes, you can define computed type properties only
So a computed property does not store a value itself, but it is calculated. That I understand. But I don't get how such a thing can apply to type properties. Such properties belong to the class itself and not to an instance of it.
So if you use a getter for such a computed type property, what could you possibly use to calculate it? It can't be any other type properties, as they too can only be computed properties. You would get a sort of loop of computed properties because there aren't any stored type properties.
In the same way, I also don't get what a setter would do. If you call the setter of a computed type property, what can it set? There are no stored type properties to be set.
Bear in mind that stored class properties are only unsupported at the moment. The compiler error you get when you try to use them—"Class variables not yet supported"— suggests that they're on their way. Computed class properties don't necessarily have to make sense on their own.
However, computed properties don't always have to be based on the values of stored data. As it stands, you could use them for "static" read-only values associated with the class, say:
class var ThisIsAClassConstant: String { return "Woo" }
And people have already come up with ways to store associated values, for example, in the first two singleton patterns in this answer, the class property stores its state in either a global (but private) variable, or in a static variable inside a nested structure.
These are obviously a bit "workaroundy", but they're a way of achieving class-like storage while it's not officially implemented.

ABAP create object

Below is a code snippet that is creating object.
Form userexit_save_document_prepare.
data: /bks/exitmanager type ref to /bks/exit_manager.
create object /bks/exitmanager
exporting main_prog = 'SAPMV45A'
exit_form = 'USEREXIT_SAVE_DOCUMENT_PREPARE'.
include /bks/exitman.
ENDFORM.
I got this from the documentation
For performance reasons, the parameters "main_prog" and "exit_form" should be filled, in the case of userexits, which are performed very often like "user_field_modification" in "SAPMV45A" which is called for every single screen-field.
1) What happened exactly behind when create object /bks/exitmanager is called? memory allocated for the object etc?
2) Why for performance reasons the exporting parameters of create object needs to be filled?
I'm not 100% sure, but here is my best guess:
an object called /bks/exitmanager is constructed (which is an oject of the class /bks/exit_manager or more specific a reference/"pointer" to an object of this class) .. the required memory allocated etc., but also the "constructor" code is called (probably sets some instance variables as passed to the call).
If you're explicitly passing these parameters, they don't have to be "calculated" at run-time (e.g. by looking at the call stack). This should save some time, especially if it would have to be done quite often (as described in the documentation).
It would help to see what /bks/exit_manager actually is, and a brief explanation of what you are trying to accomplish.
Expanding on what IronGoofy wrote:
data: /bks/exitmanager type ref to /bks/exit_manager
This creates a reference pointer in the ABAP memory of your program, much like a field symbol. Also it must be already delared. If it is in the include, you need to move the include.
create object /bks/exitmanager
exporting main_prog = 'SAPMV45A'
exit_form = 'USEREXIT_SAVE_DOCUMENT_PREPARE'.
This creates an object instance based on the declared class, and assigns it to the referance pointer. It does this by calling the constructor method first.
Only by examing /bks/exit_manager will you find out exactly what you need to export.
It's impossible to tell what's going on and why the parameters should be passed without taking a look at the constructor of /BKS/EXIT_MANAGER. It's a common pattern though to keep a buffer of settings (think of a static hashed table with the key being the parameters and the value holding whatever is complicated and time-consuming to fetch). In this case, I would have expected a protected constructor that cannot be accessed directly, but only using a static factory method that uses a hashed table to keep the references of the exit handler itself - optimally using weak references...