Where is ProviderBase in .NET 5? - asp.net-core

We have many projects based on the provider model/pattern. (Reading files from various sources, create reports from various sources, etc.) I have been unable to find anything equivalent to the ProviderBase in .net 5. We need an abstract interface/class that can be configured at runtime.

I suspect ProviderBase is something we will never see in ASP.NET 5 and beyond. Configuration is simpler in 5, and dependency injection is prevalent. Now you can create a class implementing your own custom interface and not have forced inheritance from ProviderBase. You can register the class or an instance of the class with a container and it will appear throughout the application. It might look like a bit more work at first, but I also suspect embracing DI will result in less code, and simpler code.

Related

Using Autofac in Ninject

Hello I have many many projects in many solutions and all use Ninject as IoC container. Common libraries have Ninject modules, the applications (like console application) usually have modules too and combine the modules in one StandardKernel. Now I have to change all common libraries to Autofac.
Let's say I make modifications and use Autofac (by defining Autofac modules) in a project named A (common library). A is referenced in project B (a console application) which still uses Ninject. Let's assume that for now I do not want to modify project B too much and I want to leave Ninject there.
It is possible to use Autofac modules from project A when in the end I use Ninject's StandardKernel in the "final" project B?
To the best of my knowledge there is no adapter that just "converts" one IoC format to the other. I don't think Ninject supports Microsoft.Extensions.DependencyInjection format registrations, either, so trying to use the IServiceCollection from there as a bridge also won't work.
Unfortunately, I think you're stuck. You'll have to do it all at once. Sorry.

Typhoon support "Autowire" and "Scope" definition

If I compare Typhoon with one of the common IOC container spring in java i could not find two important freatures in the documentation.
How to annotate #autowired?
How to annotate #Scope? Especially distinglish between SCOPE_SINGLETON and SCOPE_PROTOTYPE.
More about spring here:
http://docs.spring.io/spring/docs/4.0.0.RELEASE/spring-framework-reference/html/beans.html#beans-standard-annotations
Typhoon supports the prototype and singleton scopes along with two other scopes designed specifically for mobile and desktop applications.
In a server-side application, the server may be supporting any of the application's use-cases at a given time. Therefore it makes sense for those components to have the singleton scope. In a mobile application, while there are background services its more common to service one use case at a time. And there are memory, CPU and batter constraints.
Therefore the default scope with Typhoon is TyphoonScopeObjectGraph, which means that references to other components while resolving eg a top-level controller will be shared. In this way an object graph can be loaded up and then disposed of when done.
There's also the following:
TyphoonScopeSingleton
TyphoonScopePrototype
TyphoonScopeWeakSingleton
Auto-wiring macros vs native style assembly:
Unfortunately, Objective-C has only limited run-time support for "annotations" using macros. So the option was to use either a compile-time pre-processor, which has some drawbacks, or to work around the limitations and force it in using a quirky style. We decided that its best (for now) to use Macros only for simple convention-over-configuration cases.
For more control we strongly recommend using the native style of assembly. This allows the following:
Modularize an application's configuration, so that the architecture tells a story.
IDE code-completion and refactoring works without any additional plugins.
Components can be resolved at runtime using the assembly interface, using Objective-C's AOP-like dynamism.
To set the scope using the native style:
- (id)rootController
{
return [TyphoonDefinition withClass:[RootViewController class]
configuration:^(TyphoonDefinition* definition)
{
definition.scope = TyphoonScopeSingleton;
}];
}

How to wire up WCF Service Application, Unity and AutoMapper

I have been playing around the last couple of days with different solutions for mapping DTO's to entities for a VS2013, EF6, WCF Service App project.
It is a fairly large project that is currently undergoing a major refactoring to bring the legacy code under test (as well as port the ORM from OpenAccess to EF6).
To be honest I had never used AutoMapper before but what I saw I really liked so I set out to test it out in a demo app and to be honest I am a bit ashamed that I have been unable to achieve a working solution after hours of tinkering and Googling. Here is a breakdown of the project:
WCF Service Application template based project (.svc file w/code behind).
Using Unity 3.x for my IoC container and thus creating my own ServiceHostFactory inheriting from UnityServiceHostFactory.
Using current AutoMapper nuget package.
DTO's and DAL are in two separate libraries as expected, both of which are referenced by the service app project.
My goal is simple (I think): Wire up and create all of my maps in my composition root and inject the necessary objects (using my DI container) into the class that has domain knowledge of the DTO's and a reference to my DAL library. Anyone that needs a transformation would therefore only need to reference the transformation library.
The problem: Well, there are a couple of them...
1) I cannot find a working example of AutoMapper in Unity anywhere. The code snippet that is referenced many times across the web for registering AutoMapper in Unity (see below) references a Configuration class that doesn't seem to exist anymore and I cannot find any documentation on its deprecation:
container.RegisterType<AutoMapper.Configuration, AutoMapper.Configuration>(new PerThreadLifetimeManager(), new InjectionConstructor(typeof(ITypeMapFactory),
AutoMapper.Mappers.MapperRegistry.AllMappers())).RegisterType<ITypeMapFactory,
TypeMapFactoy>().RegisterType<IConfiguration, AutoMapper.Configuration>().RegisterType<IConfigurationProvider,
AutoMapper.Configuration>().RegisterType<IMappingEngine, MappingEngine>();
2) Where to create the maps themselves... I would assuming that I could perform this operation right in my ServiceHostFactory but is that the correct place? There is a Bootstrapper project out there but I have not gone down that road (yet) and would like to avoid it if possible.
3) Other than the obviously necessary reference to AutoMapper in the DTO lib, what would I be injecting into the instantition, the configuration object (assuming IConfiguration or IConfigurationProvider) and which class I am injecting into the constructor of the WCF service to gain access to the necessary object.
I know #3 is a little vague but since I cannot get AutoMapper bound in my Unity container, I cannot test/trial/error to figure out the other issues.
Any pointers would be greatly appreciated.
UPDATE
So I now have a working solution that is testing correctly but would still like to get confirmation that I am following any established best practices.
First off, the Unity container registration for AutoMapper (as of 11/13/2013) v3.x looks like this:
container
.RegisterType<ConfigurationStore, ConfigurationStore>
(
new ContainerControlledLifetimeManager()
, new InjectionConstructor(typeof(ITypeMapFactory)
, MapperRegistry.AllMappers())
)
.RegisterType<IConfigurationProvider, ConfigurationStore>()
.RegisterType<IConfiguration, ConfigurationStore>()
.RegisterType<IMappingEngine, MappingEngine>()
.RegisterType<ITypeMapFactory, TypeMapFactory>();
Right after all of my container registrations, I created and am calling a RegisterMaps() method inside of ConfigureContainer(). I created a test mapping that does both an auto mapping for like named properties as well as a custom mapping. I did this in my demo app for two reasons primarily:
I don't yet know AutoMapper in a WCF app hosted in IIS and injected with Unity well enough to fully understand its behavior. I do not seem to have to inject any kind of configuration object into my library that does the transformations and I am still reading through the source to understand its implementation.
As I understand it, there is a caching mechanism at play here and that if a mapping is not found in cache that it will create it on the fly. While this is great in theory, the only way I could then test my mappings that were occurring in my composition root was to do some sort of custom mapping and then call Mapper.Map in the library that performs mapping and returns the DTO.
All of that blathering aside, here is what I was able to accomplish.
WCF Service App (composition root) injects all of the necessary objects including my DtoConversionMapper instance.
The project is made up of the WCF Service App (comp root), DtoLib, DalLib, ContractsLib (interfaces).
In my ServiceFactoryHost I am able to create mappings, including custom mappings (i.e. map unlike named properties between my DTO and EF 6 entity).
The DtoConversionMapper class lives in the DtoLib library and looks like this: IExampleDto GetExampleDto(ExampleEntity entity);
Any library with a reference to the DtoLib can convert back and forth, including the Service App where the vast majority of these calls will take place.
Any guiding advice would be greatly appreciated but I do have a working demo now that I can test things out with while I work through this large refactoring.
Final Update
I changed the demo project just a little by adding another library (MappingLib) and moved all of my DTO conversions and mappings to it in a static method. While I still call the static method in my composition root after the Unity container is initialized, this gives me the added flexibility of being able to call that same map creation method in my NUnit unit test libraries, effectively eliminating any duplication of code surrounding auto mapper and makes it very testable.

Class versioning

I'm looking for a clean way to make incremental updates to my code library, without breaking backwards compatibility. This could mean adding new members to classes, or changing existing members to provide additional functionality. Sometimes I am required to change a member in such a way that it would break existing code (e.g. renaming a method or changing its return type), so I'd rather not touch any of my existing types once they are shipped.
The way I currently set this up is through inheritance and polymorphism by creating a new class that extends the previous "version" of that class.
The way this works is by creating the appropriate version of StatusResult (e.g. StatusResultVersion3), based on the actual value of the ProtocolVersion property, and returning it as an instance of CommandResult.
Because .NET does not seem to have a concept of class versioning, I had to come up with my own: appending the version number to the end of the class name. This will no doubt make you cringe. I could easily imagine yourself scratching your eyes out after zooming in on the diagram. But it works. I can add new members and override existing members, without introducing any code breaking changes.
Is there a better way to version my classes?
There are typically two approaches when considering existing code and assembly updates:
Regression Testing
This is a great approach for non-breaking changes, where you can simply overload functions to provide new parameters, etc. Visual Studio has some very advanced unit testing capabilities to make your regression testing relatively easy and automated.
Assembly Versions
If your changes are going to start breaking things, like rewriting the way some utility works, then it's time for a new assembly version. .NET is very good about working with assembly versions. You can deploy the versioned assemblies to different folders so that existing code can continue to reference the old version while new code can take advantage of the features in the new version.
The problem with interfaces is that once published they're largely set in stone. To quote Anders Hejlsburg:
... It's like adding a method to an interface. After you publish an interface, it is for all practical purposes immutable, because any implementation of it might have the methods that you want to add in the next version. So you've got to create a new interface instead.
So you can never just update an interface, you need to create a completely new one. Of course, you can have a single class implement both interfaces so your maintainability effort is fairly low compared with (say) polymorphic classes where your code will become spread out between multiple classes over time.
Multiple Interfaces also allows you to remove methods in a way that classes do not (Sure, you can Deprecate them but that can result in very noisy intellisense after a few iterations)
I personally lean towards having entirely stand-alone versions of the interface in each assembly version.
That is to say...
v 0.1.0.0
interface IExample
{
String DoSomething();
}
v 0.2.0.0
interface IExample
{
void DoSomethingElse();
}
How you implement them behind the scenes is up to you, but most likely it'll be the same classes with slightly different methods doing similar jobs (otherwise, why use the same interface?)
All the old code should be referencing 0.1.x.x and new code will reference 0.2.x.x. About the only issue is when you find (say) a security flaw and the fix needs to be back-ported to an earlier version. This is where a decent VCS comes in (Personal preference is TFS but SVN or anything else which supports branching/merging will do).
Merge the fixes from the 0.2 branch back into the 0.1 branch and then do a recompile to result in (say) 0.1.1.0.
As long as you stick to a process like this:
Major or Minor build will increment if there are any breaking changes (aka signatures will not change on Build/Revision increments)
Use publisher policies if the new Major/Minor version should be used by older programs (equivalent to guaranteeing nothing broke so use the new version anyway)
References in client apps should point at a Major/Minor version but not specify revision/build
This gives you:
A clean codebase without legacy clutter
Allows clients to use the latest version with no code changes if nothing has broken
Prevents clients using newer versions of an assembly which do have breaking changes until they recompile (and, one hopes, update their code as appropriate to take advantage of the new features.)
Allows you to release security patches for previous versions
The OP solved his problem as indicated by this comment:
In the end, I went with the interfaces idea because it allows me to keep multiple versions of a class member in a single class file. When I need to update the class, I'll just add the new interface, shadowing the member that has been changed, and change the return type on some of my methods. This works without breaking backwards compatibility because of polymorphism.
If this is mainly for serialization, This can be achieved in .Net using DataContractSerializers and DataAnnotations. They can deserialize different versions an object into the same object to allow for different versions of the same class to be deserialized, leaving any properties it can't map blank.

How do you implement C#4's IDynamicObject interface?

To implement "method-missing"-semantics and such in C# 4.0, you have to implement IDynamicObject:
public interface IDynamicObject
{
MetaObject GetMetaObject(Expression parameter);
}
As far as I can figure out IDynamicObject is actually part of the DLR, so it is not new. But I have not been able to find much documentation on it.
There are some very simple example implementations out there (f.x. here and here), but could anyone point me to more complete implementations or some real documentation?
Especially, how exactly are you supposed to handle the "parameter"-parameter?
The short answer is that the MetaObject is what's responsible for actually generating the code that will be run at the call site. The mechanism that it uses for this is LINQ expression trees, which have been enhanced in the DLR. So instead of starting with an object, it starts with an expression that represents the object, and ultimately it's going to need to return an expression tree that describes the action to be taken.
When playing with this, please remember that the version of System.Core in the CTP was taken from a snapshot at the end of August. It doesn't correspond very cleanly to any particular beta of IronPython. A number of changes have been made to the DLR since then.
Also, for compatibility with the CLR v2 System.Core, releases of IronPython starting with either beta 4 or beta 5 now rename everything in that's in the System namespace to be in the Microsoft namespace instead.
If you want an end to end sample including source code, resulting in a dynamic object that stores value for arbitrary properties in a Dictionary then my post "A first look at Duck Typing in C# 4.0" could be right for you. I wrote that post to show how dynamic object can be cast to statically typed interfaces. It has a complete working implementation of a Duck that is a IDynamicObject and may acts like a IQuack.
If you need more information contact me on my blog and I will help you along, as good as I can.
I just blogged about how to do this here:
http://mikehadlow.blogspot.com/2008/10/dynamic-dispatch-in-c-40.html
Here is what I have figured out so far:
The Dynamic Language Runtime is currently maintained as part of the IronPython project. So that is the best place to go for information.
The easiest way to implement a class supporting IDynamicObject seems to be to derive from Microsoft.Scripting.Actions.Dynamic and override the relevant methods, for instance the Call-method to implement function call semantics. It looks like Microsoft.Scripting.Actions.Dynamic hasn't been included in the CTP, but the one from IronPython 2.0 looks like it will work.
I am still unclear on the exact meaning of the "parameter"-parameter, but it seems to provide context for the binding of the dynamic-object.
This presentation also provides a lot of information about the DLR:
Deep Dive: Dynamic Languages in Microsoft .NET by Jim Hugunin.