Typhoon support "Autowire" and "Scope" definition - objective-c

If I compare Typhoon with one of the common IOC container spring in java i could not find two important freatures in the documentation.
How to annotate #autowired?
How to annotate #Scope? Especially distinglish between SCOPE_SINGLETON and SCOPE_PROTOTYPE.
More about spring here:
http://docs.spring.io/spring/docs/4.0.0.RELEASE/spring-framework-reference/html/beans.html#beans-standard-annotations

Typhoon supports the prototype and singleton scopes along with two other scopes designed specifically for mobile and desktop applications.
In a server-side application, the server may be supporting any of the application's use-cases at a given time. Therefore it makes sense for those components to have the singleton scope. In a mobile application, while there are background services its more common to service one use case at a time. And there are memory, CPU and batter constraints.
Therefore the default scope with Typhoon is TyphoonScopeObjectGraph, which means that references to other components while resolving eg a top-level controller will be shared. In this way an object graph can be loaded up and then disposed of when done.
There's also the following:
TyphoonScopeSingleton
TyphoonScopePrototype
TyphoonScopeWeakSingleton
Auto-wiring macros vs native style assembly:
Unfortunately, Objective-C has only limited run-time support for "annotations" using macros. So the option was to use either a compile-time pre-processor, which has some drawbacks, or to work around the limitations and force it in using a quirky style. We decided that its best (for now) to use Macros only for simple convention-over-configuration cases.
For more control we strongly recommend using the native style of assembly. This allows the following:
Modularize an application's configuration, so that the architecture tells a story.
IDE code-completion and refactoring works without any additional plugins.
Components can be resolved at runtime using the assembly interface, using Objective-C's AOP-like dynamism.
To set the scope using the native style:
- (id)rootController
{
return [TyphoonDefinition withClass:[RootViewController class]
configuration:^(TyphoonDefinition* definition)
{
definition.scope = TyphoonScopeSingleton;
}];
}

Related

Akka Remote shared classes

I have two different Java 8 projects that will live on different servers and which will both use Akka (specifically Akka Remoting) to talk to each other.
For instance, one app might send a Fizzbuzz message to the other app:
public class Fizzbuzz {
private int foo;
private String bar;
// Getters, setters & ctor omitted for brevity
}
I've never used Akka Remoting before. I assume I need to create a 3rd project, a library/jar for holding the shared messages (such as Fizzbuzz and others) and then pull that library in to both projects as a dependency.
Is it that simple? Are there any serialization (or other Akka and/or networking) considerations that affect the design of these "shared" messages? Thanks in advance!
Shared library is a way to go for sure, except there are indeed serialization concerns:
Akka-remoting docs:
When using remoting for actors you must ensure that the props and messages used for those actors are serializable. Failing to do so will cause the system to behave in an unintended way.
For more information please see Serialization.
Basically, you'll need to provide and configure the serialization for actor props and messages sent (including all the nested classes of course). If I'm not mistaking default settings will get you up and running without any configuration on your side, provided that everything you send over the wire is java-serializable.
However, default config uses default Java serialization, which is known to be quite inefficient - so you might want to switch to protobuf, kryo, or maybe even json. In that case, it would make sense to provide the serialization implementation and bindings as a shared library - either a dedicated one or a part of the "shared models" one that you mentioned in the question - depends if you want to reuse it elsewhere and mind/don't mind having serailization-related transitive dependencies popping all over the place.
Finally, if you allow some personal opinion, I would suggest trying protobuf first - it's binary format (read: efficient) and is widely supported (there are bindings for other languages). Kryo works well too (I have a few closed-source akka-cluster apps with kryo serialization in production), but has a few quirks with regards to collection/map handling.

Namespace and module confusion in typescript?

The official site of Typescript get me ask a question,
"Do we need to use namespace or not?".
The following quote explains the 2 things well:
It’s important to note that in TypeScript 1.5, the nomenclature has
changed. “Internal modules” are now “namespaces”. “External modules”
are now simply “modules”, as to align with ECMAScript 2015’s
terminology, (namely that module X { is equivalent to the
now-preferred namespace X {).
So, they suggest that TS team prefer namespace.
Further, it says we should use "namespace" to struct the internal module:
This post outlines the various ways to organize your code using
namespaces (previously “internal modules”) in TypeScript. As we
alluded in our note about terminology, “internal modules” are now
referred to as “namespaces”. Additionally, anywhere the module keyword
was used when declaring an internal module, the namespace keyword can
and should be used instead. This avoids confusing new users by
overloading them with similarly named terms.
The above quote is all from the Namespace section, and yes, it says again, but in a internal secnario.
but in the module section, one paragraph, says that:
Starting with ECMAScript 2015, modules are native part of the
language, and should be supported by all compliant engine
implementations. Thus, for new projects modules would be the
recommended code organization mechanism.
Does it mean that I don't need to bother with namespace, use module all along is the suggested way to develop?
Does it mean that I don't need to bother with namespace, use module all along is the suggested way to develop?
I wouldn't put it exactly that way... here's another paraphrase of what has happened. One upon a time, there were two terms used in Typescript
"external modules" - this was the TS analog to what the JS community called AMD (e.g. RequireJS) or CommonJS (e.g. NodeJS) modules. This was optional, for some people who write browser-based code only, they don't always bother with this, especially if they use globals to communicate across files.
"internal modules" - this is a hierarchical way of organising your variables/functions so that not everything is global. The same pattern exists in JS, it's when people organise their variables into objects/nested objects rather than having them all global.
Along came Ecmascript 2015 (a.k.a. ES6), which added a new formal, standard format that belonged in the "external modules" category. Because of this change, Typescript wanted to change the terminology to match the new Javascript standard (being that it likes to be a superset of Javascript, and tries its best to avoid confusion for users coming from Javascript). Thus, the switch of "external modules" being simplified to just "modules", and "internal modules" being renamed to "namespaces".
The quote you found here:
Starting with ECMAScript 2015, modules are native part of the language, and should be supported by all compliant engine implementations. Thus, for new projects modules would be the recommended code organization mechanism.
Is likely alluding to guidance for users who were not yet using (external) modules. To at least consider using it now. However, support for ES6 modules is still incomplete in that browsers as of May 2016 don't have built-in module loaders. So, you either have to add a polyfill (which handles it at runtime) like RequireJS or SystemJS, or a bundler (like browserify or webpack) that handles it at build time (before you deploy to your website).
So, would you ever use both modules (formerly "external modules") and namespaces? Absolutely - I use them both frequently in my codebases. I use (external) modules to organise my code files.
Namespaces in Typescript are extremely useful. Specifically, I use namespace declaration merging as a typesafe way to add extra properties to function objects themselves (a pattern often used in JS). In addition, while namespaces are a lot like regular object variables, you can hang subtypes (nested interfaces, classes, enums, etc.) off of their names.
Here is an example of a function with a property (very common in NodeJS libs):
function someUsefulFunction() {
// asynchronous version
return ...; // some promise
}
namespace someUsefulFunction {
export function sync() {
// synchronous version
}
}
This allows for consumers to do this common NodeJS pattern:
// asynchronous consumer
someUsefulFunction()
.then(() => {
// ...
});
// synchronous consumer
someUsefulFunction.sync();
Similarly, say you have an API that takes in an options object. If that options type is specific to that API,
function myFunc(options?: myFunc.Options) {
// ...
}
namespace myFunc {
export interface Options {
opt1?: number;
opt2?: boolean;
opt3?: string;
}
}
In that case, you don't have to pollute a larger namespace (say whole module scope) with the type declaration for the options.
Hope this helps!

Where is ProviderBase in .NET 5?

We have many projects based on the provider model/pattern. (Reading files from various sources, create reports from various sources, etc.) I have been unable to find anything equivalent to the ProviderBase in .net 5. We need an abstract interface/class that can be configured at runtime.
I suspect ProviderBase is something we will never see in ASP.NET 5 and beyond. Configuration is simpler in 5, and dependency injection is prevalent. Now you can create a class implementing your own custom interface and not have forced inheritance from ProviderBase. You can register the class or an instance of the class with a container and it will appear throughout the application. It might look like a bit more work at first, but I also suspect embracing DI will result in less code, and simpler code.

Initialize mmvcross IOC for Windows Runtime Component Background Task

In building my current (first) Windows Phone app it requires me to create a Windows Runtime Component to achieve the functionality I require. In order for this setup to work and not duplicate a lot of code from my PCLs into the task class itself, I wanted to use the MMVMCross IOC that I am already using throughout the application.
Unfortunately, the Background Task (IBackgroundTask) is executed in an entirely different process. Trying to utilize the IOC via Mvx.Resolve throws a NullReferenceException. I cannot figure out how to initialize the IOC as the standard "setup.cs" method does not work in the Runtime Component.
I do not need the entire MVVMCross stack for this -- just the IOC.
Thank you.
I finally figured it out. I have to re-register on the background task, but to initialize you would call the basic initialize method on the simple IOC container:
Cirrious.CrossCore.IoC.MvxSimpleIoCContainer.Initialize();
Plugins were a problem, as the standard plugin mechanism is not available, but you can manually register the interfaces such as this:
Mvx.LazyConstructAndRegisterSingleton<IMvxFileStore>(() => new MvxWindowsCommonBlockingFileStore());
Of course, you can still register your other types and interfaces as you normally would.

How can I implement the service locator pattern in Cocoa Touch across multiple projects?

This is a problem which has been bugging me for a while now. I'm still pretty new with some of these patterns so you'll have to forgive me (and correct me) if I use any of the terms incorrectly.
My Methodology
I've created a game engine. All of the objects in my game engine use inversion of control to get dependencies. These dependencies all implement protocols and are never accessed directly in the project, other than during the bootstrapping phase. In order to get these objects, I have the concept of a service locator. The service locator's job is to locate an object which conforms to a specific protocol and return it. It's a lot like a factory, but it should handle the dependencies as well.
In order to provide the services to the service locator, I have what I call service specifiers. The service locator knows about all of the service specifiers in the project, and when an object is requested, attempts to get an instance of an object conforming to the provided protocol from each of them. This object is then returned to the caller. What's cool about this set up is the service specifier also knows about a service locator, so if it has any dependencies, it just asks the service locator for those specific dependencies.
To give an example, I have an object called HighScoreManager. HighScoreManager implements the PHighScoreManager protocol. At any time if an instance of PHighScoreManager is required, it can be retrieved by calling:
id<PHighScoreManager> highScoreManager = [ServiceLocator resolve: #protocol(PHighScoreManager)];
Thus, inversion of control. However, most of the time it isn't even necessary to do this, because most classes are located in a service specifier, if one required PHighScoreManager as a dependency, then it is retrieved through the service locator. Thus, I have a nice flat approach to inversion of control.
My Problem
Because I want the code from my game engine to be shared, I have it compiled as a static library. This works awesome for everything else, but seems to get a little tricky with the service locator. The problem is some services change on a game to game basis. In my above example, a score in one game might be a time and in another it might be points. Thus, HighScoreManager depends on an instance of PHighScoreCreator, which tells it how to create a PScore objecct.
In order to provide PHighScoreCreator to HighScoreManager, I need to have a service specifier for my game. The only way I could think of to accomplish this was to use the Cocoa version of reflections. After digging around, I found out classes were discoverable through NSBundle, but it seems there's no way to get the current bundle. Thus, if I want to be able to search out my service specifiers, I would have to compile my game logic into its own bundle, and then have the engine search out this bundle and load it. In order to do this I'd have to create a third project to house both the engine code and the game logic bundle, when in reality I'd like to just have a game project which used the engine static library.
My Real Question
So after all of that, my question is
Is there a better way to do what I'm trying to accomplish in Cocoa Touch, or
Is there a way to discover classes which conform to my service specifier protocol from the main bundle?
Thanks for the help and taking the time to read the question.
-helixed
Have a look at:
+[NSBundle mainBundle];
+[NSBundle bundleForClass:];
+[NSBundle bundleWithIdentifier:];
+[NSBundle allBundles];
+[NSBundle allFrameworks];
These allow you to interact programmatically with the various bundles at runtime. Once you have a bundle to work with there are a number of strategies you could employ to find the specific class(es) you are looking for. For example:
Retrieve the bundle identifier — this will be an NSString like #"com.example.GameEngineClient".
Transform it into a legal Objective-C class name by stripping everything before the last dot, or replacing all the dots with underscores, or whatever, and then appending a predefined protocol name. Your protocol from above, for instance, might result in a string like #"GameEngineClient_PHighScoreManager".
Get the bundle's designated class for your protocol using NSClassFromString().
Now you can create an instance of the class provided by the bundle author, that implements whatever protocol you have specified.
The Objective-C runtime is a beautiful thing!
Sounds like you need to use the functions of the Objective-C runtime. First you can get a list of all available classes via objc_getClassList. Then you can iterate over all the classes and check if they conform to your protocol with class_conformsToProtocol. You shouldn’t use +conformsToProtocol: messages here, since there are classes in the runtime that don’t support this selector.