Chain up to 'Gtk.Box.new' not supported - oop

I'm new to Vala and so far I think it's pretty cool but I'm having trouble understanding inheritance. I read here that I should use base() to call the parents constructor. Alright, cool, seems understandable but It din't work for me. I kept getting the error on the title. Here is my snippet to show:
public class MyBox : Gtk.Box {
public MyBox(Gtk.Orientation orientation, int spacing) {
// I have to this
this.set_orientation(orientation);
this.set_spacing(spacing);
// I want to do this:
base(orientation, spacing);
//workaround is this:
Object(orientation: orientation, spacing: spacing);
}
}
Please help me understand why Object(....) works but not base(...)
Shouldn't it be the same thing?

This is due to implementation of the C code. When Vala generates a constructor, it generates two C functions a _new function that allocates memory and calls the _construct and a _construct function that initialises the object. When you case the base constructor using base(), it needs a matching _construct function to call. Not all the classes written in C have this; in the VAPI file, you will find has_construct_function = false for some constructors. If this is the case, no chain-up can be done. The base GObject can set properties from arguments, so this becomes the only way to set defaults in the base class.

Related

Kotlin: variable in enum class can't be changed after initialization

When writing this example into the IDE:
enum class EnumTest {
FOO, BAR;
lateinit var foobar: String
}
I get the message With old Native GC, variable in enum class can't be changed after initialization on the "foobar" variable. I can't find anything about this message online. Also everything seems to work just fine, so my question is:
When and how does this affect me?
Thank you!
You could declare your values in a singleton object, set them there and reference it in the enum.
object Constants {
var FOO_STR = "bla"
var BAR_STR = "bar"
}
enum class EnumTest(val foobar: String) {
FOO(Constants.FOO_STR),
BAR(Constants.BAR_STR);
}
This code should work but also smells fishy.
Since an enum has an immutable flavor by design, I would not recommend this approach. I feel bad about posting this... but if your main problem is the resource heavy loading of these constants, maybe you do not need an enum to store those properties. Maybe just think of a simple singleton container with simple (named) properties.

Kotlin: does it make sense a property with private get and public set?

I am new to Kotlin, and I have been experimenting with the language. In Kotlin in Action, it says the following:
The accessor’s visibility by default is the same as the property’s. But you can change
this if you need to, by putting a visibility modifier before the get or set keyword.
I have tried to create a property that has a private getter and a public setter, as follows:
class BackingField {
var aProperty = 1
private get
set(value) {
field = value + 1
}
}
However, IntelliJ is suggesting me to remove the private modifier before get. Is is possible to have a public property with a private getter and a public setter? If so, what are some common applications of such entity? If not, could we conclude that what is stated in the book is partially wrong?
The book is not wrong per se. Because you can actually change the visibility on both the get and set but the set can't be more visible than the get according to this question:
Private getter and public setter for a Kotlin property
Remember that books and IDEs offer recomendations and not good design based on what you do.
The set can't be more visible than the get, as other said, but then remember that properties and backing fields is just an abstraction. You can have no backing field and declare your interface setter and getter methods with the access restrictions you wish for.
Given this use case, it's obvious that you have special requirements. I.e. the data is not just set, but also incremented by 1. So your external interface would probably have another name for it as well.
Having the syntac object.field = x invoke a setter function is suspect as well, cause the syntax implies no function invocation, as in java or C/C++ structs. it can bite you horribly and make you miss the fact that the assignment invokes a setter somewhere in your code - I would consider it bad design.
The feature of properties and getters/setters works mostly if you are working with data objects and pokos (plain old kotlin objects) only. It's very good for those cases, and can save you time, but once you stray off into more complex scenarios, as you are doing, it's weakness will begin to show.
In this case you don't need a setter, because the class will have access to it privately. The getter though, is something you have to define, and perhaps give a more apropriate name, like setAndIncrement.
class BackingField {
private var aProperty = 1
fun setAProperty(value:Int) { aProperty=value+1}
private fun getAProperty():Int { return aProperty }
fun print() {println(aProperty)}
}
fun main() {
var f = BackingField()
f.print()
f.setAProperty(10)
f.print()
println(f.aProperty) // Won't compile
}

'this' is not defined in this context

How can I solve the following case?
interface I
class A(i: I)
class C : I, A(this) // << --- 'this' is not defined in this context
In short, I want to pass the class instance to super class constructor.
Is it possible in Kotlin?
P.S.
All the answers are good and technically correct. But let's give a concrete example:
interface Pilot {
fun informAboutObstacle()
}
abstract class Car(private val pilot: Pilot) {
fun drive() {
while (true) {
// ....
if (haveObstacleDetected()) {
pilot.informAboutObstacle()
}
// ....
}
}
fun break() {
// stop the car
}
}
class AutopilotCar : Pilot, Car(this) { // For example, Tesla :)
override fun informAboutObstacle() {
break() // stop the car
}
}
This example don't look too contrived, and why can't I implement it with OOP-friendly language?
No, this is not possible on the JVM. this is only available after the super class has been initialized.
From
https://docs.oracle.com/javase/specs/jvms/se9/html/jvms-4.html#jvms-4.10.2.4
The instance initialization method (§2.9.1) for class myClass sees the new uninitialized object as its this argument in local variable 0. Before that method invokes another instance initialization method of myClass or its direct superclass on this, the only operation the method can perform on this is assigning fields declared within myClass.
So the bytecode instruction aload 0 to push this on the stack is forbidden before the super-class constructor is called. That's why it cannot be passed as an argument to the super-constructor.
Kotlin was born as a JVM language and aims for maximum interoperability with Java code and a minimum overhead of its language features. While Kotlin could have chosen to orchestrate object initialization in a different way, it would create problems in mixed Java-Kotlin class hierarchies and add significant overhead.
In the good tradition of OOP languages such as Java, C# or Swift, Kotlin doesn't allow you to leak the this reference before the call to superclass initialization has completed. In your special case you're just storing the reference, but in just a slightly different case the superclass code might try to use the received object, which at that point is still uninitialized.
As a specific example of why languages don't allow this, consider a case where A is a class from a library you use and this rule is not in effect. You pass this like you do and things work fine. Later you update the library to a newer version and it happens to add something as benign as i.toString() to its constructor. It has no idea it's actually calling an overridden method on itself. Your toString() implementation observes all its invariants broken, such as uninitialized vals.
This design suffers from other problems, not just the circular initialization dependency you are struggling with now. In a nutshell, the class A expects this:
But instead you create this:
The class A has a dependency on a collaborator object of type I. It doesn't expect itself as the collaborator. This may bring about all kinds of weird bugs. For example your C.toString() may delegate to super.toString() and A.toString() (A is the super of C) may call into I.toString(), resulting in a StackOverflowError.
I can't say from your question whether A is designed for extension, which would make the C : A part correct, but you should definitely disentangle A from I.

Variables not initialized properly when initializing it in an overriden abstract function called from constructor or init block

I hit a problem with some Kotlin code and I found out it was related to calling a method that assigns some variables from an init block (or a secondary constructor for that matter, either reproduces the problem).
MCVE:
abstract class Shader(/*Input arguments omitted for the sake of an MCVE*/){
init{
//Shader loading and attaching, not relevant
bindAttribs()//One of the abstract methods. In my actual program, this uses OpenGL to bind attributes
//GLSL program validation
getUniforms()//Same as the previous one: abstract method using GL calls to get uniforms. This gets locations so an integer is set (the problem)
}
abstract fun getUniforms();//This is the one causing problems
abstract fun bindAttribs();//This would to if primitives or non-lateinit vars are set
}
abstract class BoilerplateShader() : Shader(){
var loc_projectionMatrix: Int = 404//404 is an initial value. This can be anything though
var loc_transformationMatrix: Int = 404
var loc_viewMatrix: Int = 404
override fun getUniforms(){
//These would be grabbed by using glGetUniformLocations, but it's reproducable with static values as well
loc_projectionMatrix = 0
loc_transformationMatrix = 1
loc_viewMatrix = 2
println(loc_projectionMatrix.toString() + ", " + loc_transformationMatrix + ", " + loc_viewMatrix)
}
//debug method, only used to show the values
fun dump(){
println(loc_projectionMatrix.toString() + ", " + loc_transformationMatrix + ", " + loc_viewMatrix)
}
}
class TextureShader() : BoilerplateShader(){
override fun bindAttribs() {
//This doesn't cause a problem even though it's called from the init block, as nothing is assigned
//bindAttrib(0, "a_position");
//bindAttrib(1, "a_texCoord0");
}
}
//Other repetitive shaders, omitted for brevity
Then doing:
val tx = TextureShader()
tx.dump()
prints:
0, 1, 2
404, 404, 404
The print statements are called in order from getUniforms to the dump call at the end. It's assigned fine in the getUniforms method, but when calling them just a few milliseconds later, they're suddenly set to the default value of (in this case) 404. This value can be anything though, but I use 404 because that's a value I know I won't use for testing in this particular MCVE.
I'm using a system that relies heavily on abstract classes, but calling some of these methods (getUniforms is extremely important) is a must. If I add an init block in either BoilerplateShader or TextureShader with a call to getUniforms, it works fine. Doing a workaround with an init function (not an init block) called after object creation:
fun init(){
bindAttribs();
getUniforms();
}
works fine. But that would involve the created instance manually calls it:
val ts = TexturedShader();
ts.init();
ts.dump()
which isn't an option. Writing the code that causes problems in Kotlin in Java works like expected (considerably shortened code, but still reproducable):
abstract class Shader{
public Shader(){
getUniforms();
}
public abstract void getUniforms();
}
abstract class BoilerplateShader extends Shader{
int loc_projectionMatrix;//When this is initialized, it produces the same issue as Kotlin. But Java doesn't require the vars to be initialized when they're declared globally, so it doesn't cause a problem
public void getUniforms(){
loc_projectionMatrix = 1;
System.out.println(loc_projectionMatrix);
}
//and a dump method or any kind of basic print statement to print it after object creation
}
class TextureShader extends BoilerplateShader {
public TextureShader(){
super();
}
}
and printing the value of the variable after initialization of both the variable and the class prints 0, as expected.
Trying to reproduce the same thing with an object produces the same result as with numbers when the var isn't lateinit. So this:
var test: String = ""
prints:
0, 1, 2, test
404, 404, 404,
The last line is exactly as printed: the value if test is set to an empty String by default, so it shows up as empty.
But if the var is declared as a lateinit var:
lateinit var test: String
it prints:
0, 1, 2, test
404, 404, 404, test
I can't declare primitives with lateinit. And since it's called outside a constructor, it either needs to be initialized or be declared as lateinit.
So, is it possible to initialize primitives from an overridden abstract method without creating a function to call it?
Edit:
A comment suggested a factory method, but that's not going to work because of the abstraction. Since the attempted goal is to call the methods from the base class (Shader), and since abstract classes can't be initialized, factory methods won't work without creating a manual implementation in each class, which is overkill. And if the constructor is private to get it to work (avoid initialization outside factory methods), extending won't work (<init> is private in Shader).
So the constructors are forced to be public (whether the Shader class has a primary or secondary constructor, the child classes have to have a primary to initialize it) meaning the shaders can be created while bypassing the factory method. And, abstraction causes problems again, the factory method (having to be abstract) would be manually implemented in each child class, once again resulting in initialization and manually calling the init() method.
The question is still whether or not it's possible to make sure the non-lateinit and primitives are initialized when calling an abstract method from the constructor. Creating factory methods would be a perfect solution had there not been abstraction involved.
Note: The absolutely best idea is to avoid declaring objects/primitives in abstract functions called from the abstract class' constructor method, but there are cases where it's useful. Avoid it if possible.
The only workaround I found for this is using by lazy, since there are primitives involved and I can convert assignment to work in the blocks.
lateinit would have made it slightly easier, so creating object wrappers could of course be an option, but using by lazy works in my case.
Anyways, what's happening here is that the value assigned to the int in the constructor is later overridden by the fixed value. Pseudocode:
var x /* = 0 */
constructor() : super.constructor()//x is not initialized yet
super.constructor(){
overridden function();
}
abstract function()
overridden function() {
x = 4;
}
// The assignment if `= 0` takes place after the construction of the parent, setting x to 0 and overriding the value in the constructor
With lateinit, the problem is removed:
lateinit var x: Integer//x exists, but doesn't get a value. It's assigned later
constructor() : super.constructor()
super.constructor(){
overridden function()
}
abstract function()
overridden function(){
x = Integer(4);//using an object here since Kotlin doesn't support lateinit with primtives
}
//x, being lateinit and now initialized, doesn't get re-initialized by the declaration. x = 4 instead of 0, as in the first example
When I wrote the question, I thought Java worked differently. This was because I didn't initialize the variables there either (effectively, making them lateinit). When the class then is fully initialized, int x; doesn't get assigned a value. If it was declared as int x = 1234;, the same problem in Java occurs as here.
Now, the problem goes back to lateinit and primitives; primitives cannot be lateinit. A fairly basic solution is using a data class:
data class IntWrapper(var value: Int)
Since the value of data classes can be unpacked:
var (value) = intWrapperInstance//doing "var value = ..." sets value to the intWrapperInstance. With the parenthesis it works the same way as unpacking the values of a pair or triple, just with a single value.
Now, since there's an instance with an object (not a primitive), lateinit can be used. However, this isn't particularly efficient since it involves another object being created.
The only remaining option: by lazy.
Wherever it's possible to create initialization as a function, this is the best option. The code in the question was a simplified version of OpenGL shaders (more specifically, the locations for uniforms). Meaning this particular code is fairly easy to convert to a by lazy block:
val projectionMatrixLocation by lazy{
glGetUniformLocation(program, "projectionMatrix")
}
Depending on the case though, this might not be feasible. Especially since by lazy requires a val, which means it isn't possible to change it afterwards. This depends on the usage though, since it isn't a problem if it isn't going to change.

Swift class properties not initialized when constructed by Objective C code

I'm attempting to create a class in Swift 3 to implement a Cordova plugin. I have this building and running, but the application crashes whenever any properties of the class are accessed. I've tried two ways of initializing the class:
#objc(DSFMediaCentre)
class DSFMediaCentre : CDVPlugin
{
var players = [UUID:DSFPlayerHandler] ();
...
}
and
#objc(DSFMediaCentre)
class DSFMediaCentre : CDVPlugin
{
var players :[UUID:DSFPlayerHandler];
override init () {
players = [:];
}
...
}
However, when my players property is used, the result is a EXC_BAD_ACCESS exception, with an address that looks like a null pointer dereference.
The object is being created by Objective C code, which is a language I have no familiarity with at all, but I think this is the line that creates it:
obj = [[NSClassFromString(className)alloc] initWithWebViewEngine:_webViewEngine];
The CDVPlugin class contains a comment stating that initWithWebViewEngine should not be overridden (and indeed I do not seem to be able to override this method, because while it is declared in the CDVPlugin.m file, it isn't mentioned in CDVPlugin.h, so the Swift compiler doesn't seem to know about it), but rather initialization code should be placed in a method called pluginInitialize instead. However, if I do that I get a compiler error ("Class DSFMediaCentre has no initializers").
Furthermore, if I put my init() method back in and set it to call pluginInitialize(), like this:
override init () {
super.init(); // necessary otherwise next line is an error
pluginInitialize();
}
override func pluginInitialize() {
players = [:];
}
the error then changes to "Property 'self.players' not initialized at super.init call".
How do I make this class initialize correctly?
You have a mismatch between the strict initialization system required by the language and the procedure used by the framework you're working with.
Swift demands that a) properties be initialized as part of object construction, and b) that construction be chained to the type's supertype. But the CDVPlugin type is doing the construction on your behalf; you don't have the ability to customize it. (This makes more sense in ObjC, because it doesn't have the same compile-time restrictions as Swift.)
The situation is similar to unpacking an object from a nib file. In that case too, because it's the nib loading system that's constructing your object, you don't have the ability to customize the initializer. Your type will always be constructed by init(coder:). In a certain sense, your initialization point moves further down, to awakeFromNib(), and among other things, that forces outlets to other objects in the archive to be declared as optional, usually implicitly unwrapped.
The same solution should avail you here. You should consider pluginInitialize() to be your initialization point. The language then requires that properties be optional, since they are not filled at its initialization point. Therefore, make the property an IUO:
#objc(DSFMediaCentre)
class DSFMediaCentre : CDVPlugin
{
var players :[UUID:DSFPlayerHandler]!
override func pluginInitialize() {
players = [:];
}
}
and all should be well.
The other solution is to use lazy keyword
lazy var players :[UUID:DSFPlayerHandler] = [:]
So, you don't need to initialize players in initializer but still make sure players always non-nulable