Attempt retrieval of value from VBA dictionary and raise error if key not in use? - vba

I've used dictionaries (Whether they were called that or not) in a number of other languages, but there's always been a method that can be called with on parameter that either:
A) Returns the associated value if the parameter is in use as a key, or
B) Indicates in some way that the parameter is not used as a key
I've been forced into a position where I have to learn excel/VBA and used the collections class for all of about five minutes before the lack of an .exists method led me to look for something else. The general consensus seems to be that the scripting.Dictionary class is the VBA equivalent of associative arrays/dictionaries/hashtables in other languages.
The one thing I don't like the look of though is that the only way I can see of retrieving the value associated with a given key is to use the .items property (either explicitly, or via scripting.Dictionary("key")). But rather than doing anything to indicate the issue if key is not in use in the dictionary, it adds it.
I know I can use a if structure with .exists being the test to achieve the same functionality, and can write my own function that raises an error if the exists test fails, but it seems a lot of stuffing around to achieve what is core functionality in Python (raises KeyError), PHP (raises a Notice), Java (Maps return null - although that is not necessarily ideal in the case of HashMaps where null actually is a valid value - but it does work as an indicator for HashTables).
So is there any way of attempting to retrieve a value by key that will do something (ideally throw an error) if the key is not in use, rather than silently adding it? Google hasn't provided any answers - but maybe I'm just not phrasing the search well.

I find it inconvenient too that Dictionary adds the key when you access a non-existing key.
Just use Collection and write the missing Exist function yourself, e.g.
Function ExistsInCollection(ByVal c As Collection, ByVal key As Variant) As Boolean
On Error GoTo not_exists
c.Item key
ExistsInCollection = True
not_exists:
End Function

Related

Invalid Iterator Fix

So, looking for advice on how to fix a situation or maybe a better way to program it.
I'm using iteration to build a complicated string from key:value pairs in an unordered_map. To make this work, I'm iterating through the map to find specific items, then sending a search term to an outside function to create the string. The outside function uses its own iterator to search the same unordered_map for the passed search term, then creates the string, then erases the entries that it referenced. The problem, I believe, is that although the outside function's iterator is still valid because it called the erase function, the iterators in the main function are now invalidated and throwing an out of range error. Is there a way to reset the iterators or send them to the next valid key:value pair when they become invalidated in order to avoid the error?
The code is a mess (mostly because I'm still discovering C++) and it might be possible to use recursion to accomplish this, but I wasn't able to get recursion to work correctly.
I can post the code, but without understanding the inputs and required outputs, it's likely not going to help explain anything, so for now, I'll just leave the question as-is: is there a way to "re-validate" invalidated iterators?
I was able to resolve the issue by redefining each of the iterators once the scope of control returned back to them. For the last iterator (in the outside function) that deleted individual key:value pairs from the unordered_map, I used:
if (it != map.end()) it = map.erase(it);
This forces the iterator to move to the next valid key:value pair after the erasure.
That worked for the end of the line, but didn't work once control was returned to each of the previous iterators. In those case, the iterators were invalidated when the outside function erased a key:value pair. So as control returned to an iterator, I included the following line before it looped back for increment:
if (it != map.end()) it = map.begin();
It seems to have resolved all of the issues, though I'm sure there's a better way to handle it.

How to prevent empty list errors in in clause in sql?

One common problem we have in our codebase is that people forget to check if a list is empty before using it in an in clause.
For example (in Scala with Anorm):
def exists(element: String, list: List[String]): Boolean =
SQL("select {element} in {list} as result")
.on('element -> element, 'list -> list)
.as(SqlParser.bool("result").single)
This code works perfectly well as long as list has at least one element.
If it has 0 elements, you get a syntax error, which is weird if you're used to other programming languages that would allow this empty list case.
So, my question is: what's the best way to prevent this error from happening?
Initially, we did this:
def exists(element: String, list: List[String]): Boolean =
if (list.nonEmpty) {
SQL("select {element} in {list} as result")
.on('element -> element, 'list -> list)
.as(SqlParser.bool("result").single)
} else {
false
}
This works perfectly well, and has the added advantage that it doesn't hit the database at all.
Unfortunately, we don't remember to do this every time, and it seems that 1-2 times a month we're fixing an issue related to this.
An alternate solution we came up with was to use a NonEmptyList class instead of a standard List. This class must have at least one element. This works excellent, but again, people have not been diligent with always using this class.
So I'm wondering if there's an approach I'm missing that prevent this type of error better?
It looks like you've already found a way to resolve this problem - you have an exists() function which handles an empty list cleanly. The problem is that people are writing their own exists() functions which don't do that.
You need to make sure that your function is accessible as a utility function, so that you can reuse it whenever you need to, rather than having to rewrite the function.
Your problem is an encapsulation problem: the Anorm API is like an open flame and people can burn themselves. If you rely just on people to take precautions, someone will get burnt.
The solution is to restrict the access to the Anorm API to a limited module/package/area of your code:
Anorm API will be private and accessible only from very few places, where it is going to be easy to perform the necessary controls. This part of the code will expose an API
Every other part of the code will need to go through that API, effectively using Anorm in the "safe" way

Runtime method to get names of argument variables?

Inside an Objective-C method, it is possible to get the selector of the method with the keyword _cmd. Does such a thing exist for the names of arguments?
For example, if I have a method declared as such:
- (void)methodWithAnArgument:(id)foo {
...
}
Is there some sort of construct that would allow me to get access to some sort of string-like representation of the variable name? That is, not the value of foo, but something that actually reflects the variable name "foo" in a local variable inside the method.
This information doesn't appear to be stored in NSInvocation or any of its related classes (NSMethodSignature, etc), so I'm not optimistic this can be done using Apple's frameworks or the runtime. I suspect it might be possible with some sort of compile-time macro, but I'm unfamiliar with C macros so I wouldn't know where to begin.
Edit to contain more information about what I'm actually trying to do.
I'm building a tool to help make working with third-party URL schemes easier. There are two sides to how I want my API to look:
As a consumer of a URL scheme, I can call a method like [twitterHandler showUserWithScreenName:#"someTwitterHandle"];
As a creator of an app with a URL scheme, I can define my URLs in a plist dictionary, whose key-value pairs look something like #"showUserWithScreenName": #"twitter://user?screenName={screenName}".
What I'm working on now is finding the best way to glue these together. The current fully-functioning implementation of showUserWithScreenName: looks something like this:
- (void)showUserWithScreenName:(NSString *)screenName {
[self performCommand:NSStringFromSelector(_cmd) withArguments:#{#"screenName": screenName}];
}
Where performCommand:withArguments: is a method that (besides some other logic) looks up the command key in the plist (in this case "showUserWithScreenName:") and evaluates the value as a template using the passed dictionary as the values to bind.
The problem I'm trying to solve: there are dozens of methods like this that look exactly the same, but just swap out the dictionary definition to contain the correct template params. In every case, the desired dictionary key is the name of the parameter. I'm trying to find a way to minimize my boilerplate.
In practice, I assume I'm going to accept that there will be some boilerplate needed, but I can probably make it ever-so-slightly cleaner thanks to NSDictionaryOfVariableBindings (thanks #CodaFi — I wasn't familiar with that macro!). For the sake of argument, I'm curious if it would be possible to completely metaprogram this using something like forwardInvocation:, which as far as I can tell would require some way to access parameter names.
You can use componentsSeparatedByString: with a : after you get the string from NSStringFromSelector(_cmd) and use your #selector's argument names to put the arguments in the correct order.
You can also take a look at this post, which is describing the method naming conventions in Objective C

Proper error propagation in clojure

I'm currently working on my first major project in clojure and have run into a question regarding coding style and the most "clojure-esque" way of doing something. Basically I have a function I'm writing which takes in a data structure and a template that the function will try to massage the data structure into. The template structure will look something like this:
{
:key1 (:string (:opt :param))
:key2 (:int (:opt :param))
:key3 (:obj (:tpl :template-structure))
:key4 (:list (:tpl :template-structure))
}
Each key is an atom that will be searched for in the given data structure, and it's value will be attempted to be matched to the type given in the template structure. So it would look for :key1 and check that it's a string, for instance. The return value would be a map that has :key1 pointing to the value from the given data structure (the function could potentially change the value depending on the options given).
In the case of :obj it takes in another template structure, and recursively calls itself on that value and the template structure, and places the result from that in the return. However, if there's an error I want that error returned directly.
Similarly for lists I want it to basically do a map of the function again, except in the case of an error which I want returned directly.
My question is what is the best way to handle these errors? Some simple exception handling would be the easiest way, but I feel that it's not the most functional way. I could try and babysit the errors all the way up the chain with tons of if statements, but that also doesn't seem very sporting. Is there something simple I'm missing or is this just an ugly problem?
You might be interested in schematic, which does pretty similar stuff. You can see how it's used in the tests, and the implementation.
Basically I defined an error function, which returns nil for correctly-formatted data, or a string describing the error. Doing it with exceptions instead would make the plumbing easier, but would make it harder to get the detailed error messages like "[person: [first_name: expected string, got integer]]".

Is returning null bad design? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
I've heard some voices saying that checking for a returned null value from methods is bad design. I would like to hear some reasons for this.
pseudocode:
variable x = object.method()
if (x is null) do something
The rationale behind not returning null is that you do not have to check for it and hence your code does not need to follow a different path based on the return value. You might want to check out the Null Object Pattern which provides more information on this.
For example, if I were to define a method in Java that returned a Collection I would typically prefer to return an empty collection (i.e. Collections.emptyList()) rather than null as it means my client code is cleaner; e.g.
Collection<? extends Item> c = getItems(); // Will never return null.
for (Item item : c) { // Will not enter the loop if c is empty.
// Process item.
}
... which is cleaner than:
Collection<? extends Item> c = getItems(); // Could potentially return null.
// Two possible code paths now so harder to test.
if (c != null) {
for (Item item : c) {
// Process item.
}
}
Here's the reason.
In Clean Code by Robert Martin he writes that returning null is bad design when you can instead return, say, empty array. Since expected result is an array, why not? It'll enable you to iterate over result without any extra conditions. If it's an integer, maybe 0 will suffice, if it's a hash, empty hash. etc.
The premise is to not force calling code to immediately handle issues. Calling code may not want to concern itself with them. That's also why in many cases exceptions is better than nil.
Good uses of returning null:
If null is a valid functional result, for example: FindFirstObjectThatNeedsProcessing() can return null if not found and the caller should check accordingly.
Bad uses: Trying to replace or hide exceptional situations such as:
catch(...) and return null
API dependency initialization failed
Out of disk space
Invalid input parameters (programming error, inputs must be sanitized by the caller)
etc
In those cases throwing an exception is more adequate since:
A null return value provides no meaningful error info
The immediate caller most likely cannot handle the error condition
There is no guarantee that the caller is checking for null results
However, Exceptions should not be used to handle normal program operation conditions such as:
Invalid username/password (or any user-provided inputs)
Breaking loops or as non-local gotos
Yes, returning NULL is a terrible design, in object-oriented world. In a nutshell, NULL usage leads to:
ad-hoc error handling (instead of exceptions)
ambiguous semantic
slow instead of fast failing
computer thinking instead of object thinking
mutable and incomplete objects
Check this blog post for a detailed explanation: http://www.yegor256.com/2014/05/13/why-null-is-bad.html. More in my book Elegant Objects, Section 4.1.
Who says this is bad design?
Checking for nulls is a common practice, even encouraged, otherwise you run the risk of NullReferenceExceptions everywhere. Its better to handle the error gracefully than throw exceptions when you don't need to.
Based on what you've said so far, I think there's not enough information.
Returning null from a CreateWidget()method seems bad.
Returning null from a FindFooInBar() method seems fine.
Its inventor says it is a billion dollar mistake!
It depends on the language you're using. If you're in a language like C# where the idiomatic way of indicating the lack of a value is to return null, then returning null is a good design if you don't have a value. Alternatively, in languages such as Haskell which idiomatically use the Maybe monad for this case, then returning null would be a bad design (if it were even possible).
If you read all the answers it becomes clear the answer to this question depends on the kind of method.
Firstly, when something exceptional happens (IOproblem etc), logically exceptions are thrown. When exactly something is exceptional is probably something for a different topic..
Whenever a method is expected to possibly have no results there are two categories:
If it is possible to return a neutral value, do so.
Empty enumrables, strings etc are good examples
If such a neutral value does not exist, null should be returned.
As mentioned, the method is assumed to possibly have no result, so it is not exceptional, hence should not throw an exception. A neutral value is not possible (for example: 0 is not especially a neutral result, depending on the program)
Untill we have an official way to denote that a function can or cannot return null, I try to have a naming convention to denote so.
Just like you have the TrySomething() convention for methods that are expected to fail, I often name my methods SafeSomething() when the method returns a neutral result instead of null.
I'm not fully ok with the name yet, but couldn't come up with anything better. So I'm running with that for now.
I have a convention in this area that served me well
For single item queries:
Create... returns a new instance, or throws
Get... returns an expected existing instance, or throws
GetOrCreate... returns an existing instance, or new instance if none exists, or throws
Find... returns an existing instance, if it exists, or null
For collection queries:
Get... always returns a collection, which is empty if no matching[1] items are found
[1] given some criteria, explicit or implicit, given in the function name or as parameters.
Exceptions are for exceptional circumstances.
If your function is intended to find an attribute associated with a given object, and that object does has no such attribute, it may be appropriate to return null. If the object does not exist, throwing an exception may be more appropriate. If the function is meant to return a list of attributes, and there are none to return, returning an empty list makes sense - you're returning all zero attributes.
It's not necessarily a bad design - as with so many design decisions, it depends.
If the result of the method is something that would not have a good result in normal use, returning null is fine:
object x = GetObjectFromCache(); // return null if it's not in the cache
If there really should always be a non-null result, then it might be better to throw an exception:
try {
Controller c = GetController(); // the controller object is central to
// the application. If we don't get one,
// we're fubar
// it's likely that it's OK to not have the try/catch since you won't
// be able to really handle the problem here
}
catch /* ... */ {
}
It's fine to return null if doing so is meaningful in some way:
public String getEmployeeName(int id){ ..}
In a case like this it's meaningful to return null if the id doesn't correspond to an existing entity, as it allows you to distinguish the case where no match was found from a legitimate error.
People may think this is bad because it can be abused as a "special" return value that indicates an error condition, which is not so good, a bit like returning error codes from a function but confusing because the user has to check the return for null, instead of catching the appropriate exceptions, e.g.
public Integer getId(...){
try{ ... ; return id; }
catch(Exception e){ return null;}
}
For certain scenarios, you want to notice a failure as soon as it happens.
Checking against NULL and not asserting (for programmer errors) or throwing (for user or caller errors) in the failure case can mean that later crashes are harder to track down, because the original odd case wasn't found.
Moreover, ignoring errors can lead to security exploits. Perhaps the null-ness came from the fact that a buffer was overwritten or the like. Now, you are not crashing, which means the exploiter has a chance to execute in your code.
What alternatives do you see to returning null?
I see two cases:
findAnItem( id ). What should this do if the item is not found
In this case we could: Return Null or throw a (checked) exception (or maybe create an item and return it)
listItemsMatching (criteria) what should this return if nothing is found?
In this case we could return Null, return an empty list or throw an Exception.
I believe that return null may be less good than the alternatives becasue it requires the client to remember to check for null, programmers forget and code
x = find();
x.getField(); // bang null pointer exception
In Java, throwing a checked exception, RecordNotFoundException, allows the compiler to remind the client to deal with case.
I find that searches returning empty lists can be quite convenient - just populate the display with all the contents of the list, oh it's empty, the code "just works".
Make them call another method after the fact to figure out if the previous call was null. ;-) Hey, it was good enough for JDBC
Well, it sure depends of the purpose of the method ... Sometimes, a better choice would be to throw an exception. It all depends from case to case.
Sometimes, returning NULL is the right thing to do, but specifically when you're dealing with sequences of different sorts (arrays, lists, strings, what-have-you) it is probably better to return a zero-length sequence, as it leads to shorter and hopefully more understandable code, while not taking much more writing on API implementer's part.
The base idea behind this thread is to program defensively. That is, code against the unexpected.
There is an array of different replies:
Adamski suggests looking at Null Object Pattern, with that reply being up voted for that suggestion.
Michael Valenty also suggests a naming convention to tell the developer what may be expected.
ZeroConcept suggests a proper use of Exception, if that is the reason for the NULL.
And others.
If we make the "rule" that we always want to do defensive programming then we can see that these suggestions are valid.
But we have 2 development scenarios.
Classes "authored" by a developer: The Author
Classes "consumed" by another(maybe) developer: the Developer
Regardless of whether a class returns NULL for methods with a return value or not,
the Developer will need to test if the object is valid.
If the developer cannot do this, then that Class/method is not deterministic.
That is, if the "method call" to get the object does not do what it "advertises" (eg getEmployee) it has broken the contract.
As an author of a class, I always want to be as kind and defensive ( and deterministic) when creating a method.
So given that either NULL or the NULL OBJECT (eg if(employee as NullEmployee.ISVALID)) needs to be checked
and that may need to happen with a collection of Employees, then the null object approach is the better approach.
But I also like Michael Valenty's suggestion of naming the method that MUST return null eg getEmployeeOrNull.
An Author who throws an exception is removing the choice for the developer to test the object's validity,
which is very bad on a collection of objects, and forces the developer into exception handling
when branching their consuming code.
As a developer consuming the class, I hope the author gives me the ability to avoid or program for the null situation
that their class/methods may be faced with.
So as a developer I would program defensively against NULL from a method.
If the author has given me a contract that always returns a object (NULL OBJECT always does)
and that object has a method/property by which to test the validity of the object,
then I would use that method/property to continue using the object, else the object is not valid
and I cannot use it.
Bottom line is that the Author of the Class/Methods must provide mechanisms
that a Developer can use in their defensive programming. That is, a clearer intention of the method.
The Developer should always use defensive programming to test the validity of the objects returned
from another class/method.
regards
GregJF
Other options to this, are:
returning some value that indicates success or not (or type of an error), but if you just need boolean value that will indicate success / fail, returning null for failure, and an object for success wouldn't be less correct, then returning true/false and getting the object through parameter.
Other approach would to to use exception to indicates failures, but here - there are actually many more voices, that say this is a BAD practice (as using exceptions may be convenient but has many disadvantages).
So I personally don't see anything bad in returning null as indication that something went wrong, and checking it later (to actually know if you have succeeded or not). Also, blindly thinking that your method will not return NULL, and then base your code on it, may lead to other, sometimes hard to find, errors (although in most cases it will just crash your system :), as you will reference to 0x00000000 sooner or later).
Unintended null functions can arise during the development of a complex programs, and like dead code, such occurrences indicate serious flaws in program structures.
A null function or method is often used as the default behavior of a revectorable function or overrideable method in an object framework.
Null_function #wikipedia
If the code is something like:
command = get_something_to_do()
if command: # if not Null
command.execute()
If you have a dummy object whose execute() method does nothing, and you return that instead of Null in the appropriate cases, you don't have to check for the Null case and can instead just do:
get_something_to_do().execute()
So, here the issue is not between checking for NULL vs. an exception, but is instead between the caller having to handle special non-cases differently (in whatever way) or not.
For my use case I needed to return a Map from method and then looking for a specific key. But if I return an empty Map, then it will lead to NullPointerException and then it wont be much different returning null instead of an empty Map.
But from Java8 onward we could use Optional. The above is the very reason Optional concept was introduced.
G'day,
Returning NULL when you are unable to create a new object is standard practise for many APIs.
Why the hell it's bad design I have no idea.
Edit: This is true of languages where you don't have exceptions such as C where it has been the convention for many years.
HTH
'Avahappy,