Make interpreter execute faster - optimization

I've created an interprter for a simple language. It is AST based (to be more exact, an irregular heterogeneous AST) with visitors executing and evaluating nodes. However I've noticed that it is extremely slow compared to "real" interpreters. For testing I've ran this code:
i = 3
j = 3
has = false
while i < 10000
j = 3
has = false
while j <= i / 2
if i % j == 0 then
has = true
end
j = j+2
end
if has == false then
puts i
end
i = i+2
end
In both ruby and my interpreter (just finding primes primitively). Ruby finished under 0.63 second, and my interpreter was over 15 seconds.
I develop the interpreter in C++ and in Visual Studio, so I've used the profiler to see what takes the most time: the evaluation methods.
50% of the execution time was to call the abstract evaluation method, which then casts the passed expression and calls the proper eval method. Something like this:
Value * eval (Exp * exp)
{
switch (exp->type)
{
case EXP_ADDITION:
eval ((AdditionExp*) exp);
break;
...
}
}
I could put the eval methods into the Exp nodes themselves, but I want to keep the nodes clean (Terence Parr saied something about reusability in his book).
Also at evaluation I always reconstruct the Value object, which stores the result of the evaluated expression. Actually Value is abstract, and it has derived value classes for different types (That's why I work with pointers, to avoid object slicing at returning). I think this could be another reason of slowness.
How could I make my interpreter as optimized as possible? Should I create bytecodes out of the AST and then interpret bytecodes instead? (As far as I know, they could be much faster)
Here is the source if it helps understanding my problem: src
Note: I haven't done any error handling yet, so an illegal statement or an error will simply freeze the program. (Also sorry for the stupid "error messages" :))
The syntax is pretty simple, the currently executed file is in OTZ1core/testfiles/test.txt (which is the prime finder).
I appreciate any help I can get, I'm really beginner at compilers and interpreters.

One possibility for a speed-up would be to use a function table instead of the switch with dynamic retyping. Your call to the typed-eval is going through at least one, and possibly several, levels of indirection. If you distinguish the typed functions instead by name and give them identical signatures, then pointers to the various functions can be packed into an array and indexed by the type member.
value (*evaltab[])(Exp *) = { // the order of functions must match
Exp_Add, // the order type values
//...
};
Then the whole switch becomes:
evaltab[exp->type](exp);
1 indirection, 1 function call. Fast.

Related

Kotlin stdlib operatios vs for loops

I wrote the following code:
val src = (0 until 1000000).toList()
val dest = ArrayList<Double>(src.size / 2 + 1)
for (i in src)
{
if (i % 2 == 0) dest.add(Math.sqrt(i.toDouble()))
}
IntellJ (in my case AndroidStudio) is asking me if I want to replace the for loop with operations from stdlib. This results in the following code:
val src = (0 until 1000000).toList()
val dest = ArrayList<Double>(src.size / 2 + 1)
src.filter { it % 2 == 0 }
.mapTo(dest) { Math.sqrt(it.toDouble()) }
Now I must say, I like the changed code. I find it easier to write than for loops when I come up with similar situations. However upon reading what filter function does, I realized that this is a lot slower code compared to the for loop. filter function creates a new list containing only the elements from src that match the predicate. So there is one more list created and one more loop in the stdlib version of the code. Ofc for small lists it might not be important, but in general this does not sound like a good alternative. Especially if one should chain more methods like this, you can get a lot of additional loops that could be avoided by writing a for loop.
My question is what is considered good practice in Kotlin. Should I stick to for loops or am I missing something and it does not work as I think it works.
If you are concerned about performance, what you need is Sequence. For example, your above code will be
val src = (0 until 1000000).toList()
val dest = ArrayList<Double>(src.size / 2 + 1)
src.asSequence()
.filter { it % 2 == 0 }
.mapTo(dest) { Math.sqrt(it.toDouble()) }
In the above code, filter returns another Sequence, which represents an intermediate step. Nothing is really created yet, no object or array creation (except a new Sequence wrapper). Only when mapTo, a terminal operator, is called does the resulting collection is created.
If you have learned java 8 stream, you may found the above explaination somewhat familiar. Actually, Sequence is roughly the kotlin equivalent of java 8 Stream. They share similiar purpose and performance characteristic. The only difference is Sequence isn't designed to work with ForkJoinPool, thus a lot easier to implement.
When there is multiple steps involved or the collection may be large, it's suggested to use Sequence instead of plain .filter {...}.mapTo{...}. I also suggest you to use the Sequence form instead of your imperative form because it's easier to understand. Imperative form may become complex, thus hard to understand, when there are 5 or more steps involved in the data processing. If there is just one step, you don't need a Sequence, because it just creates garbage and gives you nothing useful.
You're missing something. :-)
In this particular case, you can use an IntProgression:
val progression = 0 until 1_000_000 step 2
You can then create your desired list of squares in various ways:
// may make the list larger than necessary
// its internal array is copied each time the list grows beyond its capacity
// code is very straight forward
progression.map { Math.sqrt(it.toDouble()) }
// will make the list the exact size needed
// no copies are made
// code is more complicated
progression.mapTo(ArrayList(progression.last / 2 + 1)) { Math.sqrt(it.toDouble()) }
// will make the list the exact size needed
// a single intermediate list is made
// code is minimal and makes sense
progression.toList().map { Math.sqrt(it.toDouble()) }
My advice would be to choose whichever coding style you prefer. Kotlin is both object-oriented and functional language, meaning both of your propositions are correct.
Usually, functional constructs favor readability over performance; however, in some cases, procedural code will also be more readable. You should try to stick with one style as much as possible, but don't be afraid to switch some code if you feel like it's better suited to your constraints, either readability, performance, or both.
The converted code does not need the manual creation of the destination list, and can be simplified to:
val src = (0 until 1000000).toList()
val dest = src.filter { it % 2 == 0 }
.map { Math.sqrt(it.toDouble()) }
And as mentioned in the excellent answer by #glee8e you can use a sequence to do a lazy evaluation. The simplified code for using a sequence:
val src = (0 until 1000000).toList()
val dest = src.asSequence() // change to lazy
.filter { it % 2 == 0 }
.map { Math.sqrt(it.toDouble()) }
.toList() // create the final list
Note the addition of the toList() at the end is to change from a sequence back to a final list which is the one copy made during the processing. You can omit that step to remain as a sequence.
It is important to highlight the comments by #hotkey saying that you should not always assume that another iteration or a copy of a list causes worse performance than lazy evaluation. #hotkey says:
Sometimes several loops. even if they copy the whole collection, show good performance because of good locality of reference. See: Kotlin's Iterable and Sequence look exactly same. Why are two types required?
And excerpted from that link:
... in most cases it has good locality of reference thus taking advantage of CPU cache, prediction, prefetching etc. so that even multiple copying of a collection still works good enough and performs better in simple cases with small collections.
#glee8e says that there are similarities between Kotlin sequences and Java 8 streams, for detailed comparisons see: What Java 8 Stream.collect equivalents are available in the standard Kotlin library?

What is difference between functional and imperative programming languages?

Most of the mainstream languages, including object-oriented programming (OOP) languages such as C#, Visual Basic, C++, and Java were designed to primarily support imperative (procedural) programming, whereas Haskell/gofer like languages are purely functional. Can anybody elaborate on what is the difference between these two ways of programming?
I know it depends on user requirements to choose the way of programming but why is it recommended to learn functional programming languages?
Here is the difference:
Imperative:
Start
Turn on your shoes size 9 1/2.
Make room in your pocket to keep an array[7] of keys.
Put the keys in the room for the keys in the pocket.
Enter garage.
Open garage.
Enter Car.
... and so on and on ...
Put the milk in the refrigerator.
Stop.
Declarative, whereof functional is a subcategory:
Milk is a healthy drink, unless you have problems digesting lactose.
Usually, one stores milk in a refrigerator.
A refrigerator is a box that keeps the things in it cool.
A store is a place where items are sold.
By "selling" we mean the exchange of things for money.
Also, the exchange of money for things is called "buying".
... and so on and on ...
Make sure we have milk in the refrigerator (when we need it - for lazy functional languages).
Summary: In imperative languages you tell the computer how to change bits, bytes and words in it's memory and in what order. In functional ones, we tell the computer what things, actions etc. are. For example, we say that the factorial of 0 is 1, and the factorial of every other natural number is the product of that number and the factorial of its predecessor. We don't say: To compute the factorial of n, reserve a memory region and store 1 there, then multiply the number in that memory region with the numbers 2 to n and store the result at the same place, and at the end, the memory region will contain the factorial.
Definition:
An imperative language uses a sequence of statements to determine how to reach a certain goal. These statements are said to change the state of the program as each one is executed in turn.
Examples:
Java is an imperative language. For example, a program can be created to add a series of numbers:
int total = 0;
int number1 = 5;
int number2 = 10;
int number3 = 15;
total = number1 + number2 + number3;
Each statement changes the state of the program, from assigning values to each variable to the final addition of those values. Using a sequence of five statements the program is explicitly told how to add the numbers 5, 10 and 15 together.
Functional languages:
The functional programming paradigm was explicitly created to support a pure functional approach to problem solving. Functional programming is a form of declarative programming.
Advantages of Pure Functions:
The primary reason to implement functional transformations as pure functions is that pure functions are composable: that is, self-contained and stateless. These characteristics bring a number of benefits, including the following:
Increased readability and maintainability. This is because each function is designed to accomplish a specific task given its arguments. The function does not rely on any external state.
Easier reiterative development. Because the code is easier to refactor, changes to design are often easier to implement. For example, suppose you write a complicated transformation, and then realize that some code is repeated several times in the transformation. If you refactor through a pure method, you can call your pure method at will without worrying about side effects.
Easier testing and debugging. Because pure functions can more easily be tested in isolation, you can write test code that calls the pure function with typical values, valid edge cases, and invalid edge cases.
For OOP People or
Imperative languages:
Object-oriented languages are good when you have a fixed set of operations on things and as your code evolves, you primarily add new things. This can be accomplished by adding new classes which implement existing methods and the existing classes are left alone.
Functional languages are good when you have a fixed set of things and as your code evolves, you primarily add new operations on existing things. This can be accomplished by adding new functions which compute with existing data types and the existing functions are left alone.
Cons:
It depends on the user requirements to choose the way of programming, so there is harm only when users don’t choose the proper way.
When evolution goes the wrong way, you have problems:
Adding a new operation to an object-oriented program may require editing many class definitions to add a new method
Adding a new kind of thing to a functional program may require editing many function definitions to add a new case.
Most modern languages are in varying degree both imperative and functional but to better understand functional programming, it will be best to take an example of pure functional language like Haskell in contrast of imperative code in not so functional language like java/C#. I believe it is always easy to explain by example, so below is one.
Functional programming: calculate factorial of n i.e n! i.e n x (n-1) x (n-2) x ...x 2 X 1
-- | Haskell comment goes like
-- | below 2 lines is code to calculate factorial and 3rd is it's execution
factorial 0 = 1
factorial n = n * factorial (n - 1)
factorial 3
-- | for brevity let's call factorial as f; And x => y shows order execution left to right
-- | above executes as := f(3) as 3 x f(2) => f(2) as 2 x f(1) => f(1) as 1 x f(0) => f(0) as 1
-- | 3 x (2 x (1 x (1)) = 6
Notice that Haskel allows function overloading to the level of argument value. Now below is example of imperative code in increasing degree of imperativeness:
//somewhat functional way
function factorial(n) {
if(n < 1) {
return 1;
}
return n * factorial(n-1);
}
factorial(3);
//somewhat more imperative way
function imperativeFactor(n) {
int f = 1;
for(int i = 1; i <= n; i++) {
f = f * i;
}
return f;
}
This read can be a good reference to understand that how imperative code focus more on how part, state of machine (i in for loop), order of execution, flow control.
The later example can be seen as java/C# lang code roughly and first part as limitation of the language itself in contrast of Haskell to overload the function by value (zero) and hence can be said it is not purist functional language, on the other hand you can say it support functional prog. to some extent.
Disclosure: none of the above code is tested/executed but hopefully should be good enough to convey the concept; also I would appreciate comments for any such correction :)
Functional Programming is a form of declarative programming, which describe the logic of computation and the order of execution is completely de-emphasized.
Problem: I want to change this creature from a horse to a giraffe.
Lengthen neck
Lengthen legs
Apply spots
Give the creature a black tongue
Remove horse tail
Each item can be run in any order to produce the same result.
Imperative Programming is procedural. State and order is important.
Problem: I want to park my car.
Note the initial state of the garage door
Stop car in driveway
If the garage door is closed, open garage door, remember new state; otherwise continue
Pull car into garage
Close garage door
Each step must be done in order to arrive at desired result. Pulling into the garage while the garage door is closed would result in a broken garage door.
//The IMPERATIVE way
int a = ...
int b = ...
int c = 0; //1. there is mutable data
c = a+b;   //2. statements (our +, our =) are used to update existing data (variable c)
An imperative program = sequence of statements that change existing data.
Focus on WHAT = our mutating data (modifiable values aka variables).
To chain imperative statements = use procedures (and/or oop).
//The FUNCTIONAL way
const int a = ... //data is always immutable
const int b = ... //data is always immutable
//1. declare pure functions; we use statements to create "new" data (the result of our +), but nothing is ever "changed"
int add(x, y)
{
return x+y;
}
//2. usage = call functions to get new data
const int c = add(a,b); //c can only be assigned (=) once (const)
A functional program = a list of functions "explaining" how new data can be obtained.
Focus on HOW = our function add.
To chain functional "statements" = use function composition.
These fundamental distinctions have deep implications.
Serious software has a lot of data and a lot of code.
So same data (variable) is used in multiple parts of the code.
A. In an imperative program, the mutability of this (shared) data causes issues
code is hard to understand/maintain (since data can be modified in different locations/ways/moments)
parallelizing code is hard (only one thread can mutate a memory location at the time) which means mutating accesses to same variable have to be serialized = developer must write additional code to enforce this serialized access to shared resources, typically via locks/semaphores
As an advantage: data is really modified in place, less need to copy. (some performance gains)
B. On the other hand, functional code uses immutable data which does not have such issues. Data is readonly so there are no race conditions. Code can be easily parallelized. Results can be cached. Much easier to understand.
As a disadvantage: data is copied a lot in order to get "modifications".
See also: https://en.wikipedia.org/wiki/Referential_transparency
Imperative programming style was practiced in web development from 2005 all the way to 2013.
With imperative programming, we wrote out code that listed exactly what our application should do, step by step.
The functional programming style produces abstraction through clever ways of combining functions.
There is mention of declarative programming in the answers and regarding that I will say that declarative programming lists out some rules that we are to follow. We then provide what we refer to as some initial state to our application and we let those rules kind of define how the application behaves.
Now, these quick descriptions probably don’t make a lot of sense, so lets walk through the differences between imperative and declarative programming by walking through an analogy.
Imagine that we are not building software, but instead we bake pies for a living. Perhaps we are bad bakers and don’t know how to bake a delicious pie the way we should.
So our boss gives us a list of directions, what we know as a recipe.
The recipe will tell us how to make a pie. One recipe is written in an imperative style like so:
Mix 1 cup of flour
Add 1 egg
Add 1 cup of sugar
Pour the mixture into a pan
Put the pan in the oven for 30 minutes and 350 degrees F.
The declarative recipe would do the following:
1 cup of flour, 1 egg, 1 cup of sugar - initial State
Rules
If everything mixed, place in pan.
If everything unmixed, place in bowl.
If everything in pan, place in oven.
So imperative approaches are characterized by step by step approaches. You start with step one and go to step 2 and so on.
You eventually end up with some end product. So making this pie, we take these ingredients mix them, put it in a pan and in the oven and you got your end product.
In a declarative world, its different.In the declarative recipe we would separate our recipe into two separate parts, start with one part that lists the initial state of the recipe, like the variables. So our variables here are the quantities of our ingredients and their type.
We take the initial state or initial ingredients and apply some rules to them.
So we take the initial state and pass them through these rules over and over again until we get a ready to eat rhubarb strawberry pie or whatever.
So in a declarative approach, we have to know how to properly structure these rules.
So the rules we might want to examine our ingredients or state, if mixed, put them in a pan.
With our initial state, that doesn’t match because we haven’t yet mixed our ingredients.
So rule 2 says, if they not mixed then mix them in a bowl. Okay yeah this rule applies.
Now we have a bowl of mixed ingredients as our state.
Now we apply that new state to our rules again.
So rule 1 says if ingredients are mixed place them in a pan, okay yeah now rule 1 does apply, lets do it.
Now we have this new state where the ingredients are mixed and in a pan. Rule 1 is no longer relevant, rule 2 does not apply.
Rule 3 says if the ingredients are in a pan, place them in the oven, great that rule is what applies to this new state, lets do it.
And we end up with a delicious hot apple pie or whatever.
Now, if you are like me, you may be thinking, why are we not still doing imperative programming. This makes sense.
Well, for simple flows yes, but most web applications have more complex flows that cannot be properly captured by imperative programming design.
In a declarative approach, we may have some initial ingredients or initial state like textInput=“”, a single variable.
Maybe text input starts off as an empty string.
We take this initial state and apply it to a set of rules defined in your application.
If a user enters text, update text input. Well, right now that doesn’t apply.
If template is rendered, calculate the widget.
If textInput is updated, re render the template.
Well, none of this applies so the program will just wait around for an event to happen.
So at some point a user updates the text input and then we might apply rule number 1.
We may update that to “abcd”
So we just updated our text and textInput updates, rule number 2 does not apply, rule number 3 says if text input is update, which just occurred, then re render the template and then we go back to rule 2 thats says if template is rendered, calculate the widget, okay lets calculate the widget.
In general, as programmers, we want to strive for more declarative programming designs.
Imperative seems more clear and obvious, but a declarative approach scales very nicely for larger applications.
I think it's possible to express functional programming in an imperative fashion:
Using a lot of state check of objects and if... else/ switch statements
Some timeout/ wait mechanism to take care of asynchornousness
There are huge problems with such approach:
Rules/ procedures are repeated
Statefulness leaves chances for side-effects/ mistakes
Functional programming, treating functions/ methods like objects and embracing statelessness, was born to solve those problems I believe.
Example of usages: frontend applications like Android, iOS or web apps' logics incl. communication with backend.
Other challenges when simulating functional programming with imperative/ procedural code:
Race condition
Complex combination and sequence of events. For example, user tries to send money in a banking app. Step 1) Do all of the following in parallel, only proceed if all is good a) Check if user is still good (fraud, AML) b) check if user has enough balance c) Check if recipient is valid and good (fraud, AML) etc. Step 2) perform the transfer operation Step 3) Show update on user's balance and/ or some kind of tracking. With RxJava for example, the code is concise and sensible. Without it, I can imagine there'd be a lot of code, messy and error prone code
I also believe that at the end of the day, functional code will get translated into assembly or machine code which is imperative/ procedural by the compilers. However, unless you write assembly, as humans writing code with high level/ human-readable language, functional programming is the more appropriate way of expression for the listed scenarios
There seem to be many opinions about what functional programs and what imperative programs are.
I think functional programs can most easily be described as "lazy evaluation" oriented. Instead of having a program counter iterate through instructions, the language by design takes a recursive approach.
In a functional language, the evaluation of a function would start at the return statement and backtrack, until it eventually reaches a value. This has far reaching consequences with regards to the language syntax.
Imperative: Shipping the computer around
Below, I've tried to illustrate it by using a post office analogy. The imperative language would be mailing the computer around to different algorithms, and then have the computer returned with a result.
Functional: Shipping recipes around
The functional language would be sending recipes around, and when you need a result - the computer would start processing the recipes.
This way, you ensure that you don't waste too many CPU cycles doing work that is never used to calculate the result.
When you call a function in a functional language, the return value is a recipe that is built up of recipes which in turn is built of recipes. These recipes are actually what's known as closures.
// helper function, to illustrate the point
function unwrap(val) {
while (typeof val === "function") val = val();
return val;
}
function inc(val) {
return function() { unwrap(val) + 1 };
}
function dec(val) {
return function() { unwrap(val) - 1 };
}
function add(val1, val2) {
return function() { unwrap(val1) + unwrap(val2) }
}
// lets "calculate" something
let thirteen = inc(inc(inc(10)))
let twentyFive = dec(add(thirteen, thirteen))
// MAGIC! The computer still has not calculated anything.
// 'thirteen' is simply a recipe that will provide us with the value 13
// lets compose a new function
let doubler = function(val) {
return add(val, val);
}
// more modern syntax, but it's the same:
let alternativeDoubler = (val) => add(val, val)
// another function
let doublerMinusOne = (val) => dec(add(val, val));
// Will this be calculating anything?
let twentyFive = doubler(thirteen)
// no, nothing has been calculated. If we need the value, we have to unwrap it:
console.log(unwrap(thirteen)); // 26
The unwrap function will evaluate all the functions to the point of having a scalar value.
Language Design Consequences
Some nice features in imperative languages, are impossible in functional languages. For example the value++ expression, which in functional languages would be difficult to evaluate. Functional languages make constraints on how the syntax must be, because of the way they are evaluated.
On the other hand, with imperative languages can borrow great ideas from functional languages and become hybrids.
Functional languages have great difficulty with unary operators like for example ++ to increment a value. The reason for this difficulty is not obvious, unless you understand that functional languages are evaluated "in reverse".
Implementing a unary operator would have to be implemented something like this:
let value = 10;
function increment_operator(value) {
return function() {
unwrap(value) + 1;
}
}
value++ // would "under the hood" become value = increment_operator(value)
Note that the unwrap function I used above, is because javascript is not a functional language, so when needed we have to manually unwrap the value.
It is now apparent that applying increment a thousand times would cause us to wrap the value with 10000 closures, which is worthless.
The more obvious approach, is to actually directly change the value in place - but voila: you have introduced modifiable values a.k.a mutable values which makes the language imperative - or actually a hybrid.
Under the hood, it boils down to two different approaches to come up with an output when provided with an input.
Below, I'll try to make an illustration of a city with the following items:
The Computer
Your Home
The Fibonaccis
Imperative Languages
Task: Calculate the 3rd fibonacci number.
Steps:
Put The Computer into a box and mark it with a sticky note:
Field
Value
Mail Address
The Fibonaccis
Return Address
Your Home
Parameters
3
Return Value
undefined
and send off the computer.
The Fibonaccis will upon receiving the box do as they always do:
Is the parameter < 2?
Yes: Change the sticky note, and return the computer to the post office:
Field
Value
Mail Address
The Fibonaccis
Return Address
Your Home
Parameters
3
Return Value
0 or 1 (returning the parameter)
and return to sender.
Otherwise:
Put a new sticky note on top of the old one:
Field
Value
Mail Address
The Fibonaccis
Return Address
Otherwise, step 2, c/oThe Fibonaccis
Parameters
2 (passing parameter-1)
Return Value
undefined
and send it.
Take off the returned sticky note. Put a new sticky note on top of the initial one and send The Computer again:
Field
Value
Mail Address
The Fibonaccis
Return Address
Otherwise, done, c/o The Fibonaccis
Parameters
2 (passing parameter-2)
Return Value
undefined
By now, we should have the initial sticky note from the requester, and two used sticky notes, each having their Return Value field filled. We summarize the return values and put it in the Return Value field of the final sticky note.
Field
Value
Mail Address
The Fibonaccis
Return Address
Your Home
Parameters
3
Return Value
2 (returnValue1 + returnValue2)
and return to sender.
As you can imagine, quite a lot of work starts immediately after you send your computer off to the functions you call.
The entire programming logic is recursive, but in truth the algorithm happens sequentially as the computer moves from algorithm to algorithm with the help of a stack of sticky notes.
Functional Languages
Task: Calculate the 3rd fibonacci number. Steps:
Write the following down on a sticky note:
Field
Value
Instructions
The Fibonaccis
Parameters
3
That's essentially it. That sticky note now represents the computation result of fib(3).
We have attached the parameter 3 to the recipe named The Fibonaccis. The computer does not have to perform any calculations, unless somebody needs the scalar value.
Functional Javascript Example
I've been working on designing a programming language named Charm, and this is how fibonacci would look in that language.
fib: (n) => if (
n < 2 // test
n // when true
fib(n-1) + fib(n-2) // when false
)
print(fib(4));
This code can be compiled both into imperative and functional "bytecode".
The imperative javascript version would be:
let fib = (n) =>
n < 2 ?
n :
fib(n-1) + fib(n-2);
The HALF functional javascript version would be:
let fib = (n) => () =>
n < 2 ?
n :
fib(n-1) + fib(n-2);
The PURE functional javascript version would be much more involved, because javascript doesn't have functional equivalents.
let unwrap = ($) =>
typeof $ !== "function" ? $ : unwrap($());
let $if = ($test, $whenTrue, $whenFalse) => () =>
unwrap($test) ? $whenTrue : $whenFalse;
let $lessThen = (a, b) => () =>
unwrap(a) < unwrap(b);
let $add = ($value, $amount) => () =>
unwrap($value) + unwrap($amount);
let $sub = ($value, $amount) => () =>
unwrap($value) - unwrap($amount);
let $fib = ($n) => () =>
$if(
$lessThen($n, 2),
$n,
$add( $fib( $sub($n, 1) ), $fib( $sub($n, 2) ) )
);
I'll manually "compile" it into javascript code:
"use strict";
// Library of functions:
/**
* Function that resolves the output of a function.
*/
let $$ = (val) => {
while (typeof val === "function") {
val = val();
}
return val;
}
/**
* Functional if
*
* The $ suffix is a convention I use to show that it is "functional"
* style, and I need to use $$() to "unwrap" the value when I need it.
*/
let if$ = (test, whenTrue, otherwise) => () =>
$$(test) ? whenTrue : otherwise;
/**
* Functional lt (less then)
*/
let lt$ = (leftSide, rightSide) => () =>
$$(leftSide) < $$(rightSide)
/**
* Functional add (+)
*/
let add$ = (leftSide, rightSide) => () =>
$$(leftSide) + $$(rightSide)
// My hand compiled Charm script:
/**
* Functional fib compiled
*/
let fib$ = (n) => if$( // fib: (n) => if(
lt$(n, 2), // n < 2
() => n, // n
() => add$(fib$(n-2), fib$(n-1)) // fib(n-1) + fib(n-2)
) // )
// This takes a microsecond or so, because nothing is calculated
console.log(fib$(30));
// When you need the value, just unwrap it with $$( fib$(30) )
console.log( $$( fib$(5) ))
// The only problem that makes this not truly functional, is that
console.log(fib$(5) === fib$(5)) // is false, while it should be true
// but that should be solveable
https://jsfiddle.net/819Lgwtz/42/
I know this question is older and others already explained it well, I would like to give an example problem which explains the same in simple terms.
Problem: Writing the 1's table.
Solution: -
By Imperative style: =>
1*1=1
1*2=2
1*3=3
.
.
.
1*n=n
By Functional style: =>
1
2
3
.
.
.
n
Explanation in Imperative style we write the instructions more explicitly and which can be called as in more simplified manner.
Where as in Functional style, things which are self-explanatory will be ignored.

Why can't you use a object property as an index in a for loop? (MATLAB)

Below is an example that doesn't work in Matlab because obj.yo is used as the for loop's index. You can just convert this to the equivalent while loop and it works fine, so why won't Matlab let this code run?
classdef iter_test
properties
yo = 1;
end
methods
function obj = iter_test
end
function run(obj)
for obj.yo = 1:10
disp('yo');
end
end
end
end
Foreword: You shouldn't expect too much from Matlab's oop capabilities. Even though things have gotten better with matlab > 2008a, compared to a real programming language, oop support in Matlab is very poor.
From my experience, Mathworks is trying to protect the user as much as possible from doing mistakes. This sometimes also means that they are restricting the possibilities.
Looking at your example I believe that exactly the same is happening.
Possible Answer: Since Matlab doesn't have any explicit typing (variables / parameters are getting typed on the fly), your code might run into problems. Imagine:
$ a = iter_test()
% a.yo is set to 1
% let's overwrite 'yo'
$ a.yo = struct('somefield', [], 'second_field', []);
% a.yo is now a struct
The following code will therefore fail:
$ for a.yo
disp('hey');
end
I bet that if matlab would support typing of parameters / variables, your code would work just fine. However, since you can assign a completely different data type to a parameter / variable after initialization, the compiler doesn't allow you to do what you want to do because you might run into trouble.
From help
"properties are like fields of a struct object."
Hence, you can use a property to read/write to it. But not use it as variable like you are trying to do. When you write
for obj.yo = 1:10
disp('yo');
end
then obj.yo is being used as a variable, not a field name.
compare to actual struct usage to make it more clear:
EDU>> s = struct('id',10)
for s.id=1:10
disp('hi')
end
s =
id: 10
??? for s.id=1:10
|
Error: Unexpected MATLAB operator.
However, one can 'set' the struct field to new value
EDU>> s.id=4
s =
id: 4
compare the above error to what you got:
??? Error using ==> iter_test
Error: File: iter_test.m Line: 9 Column: 20
Unexpected MATLAB operator.
Therefore, I do not think what you are trying to do is possible.
The error is
??? Error: File: iter_test.m Line: 9 Column: 20
Unexpected MATLAB operator.
Means that the MATLAB parser doesn't understand it. I'll leave it to you to decide whether it's a bug or deliberate. Raise it with TMW Technical Support.
EDIT: This also occurs for all other kinds of subscripting:
The following all fail to parse:
a = [0 1];
for a(1) = 1:10, end
a = {0 1};
for a{1} = 1:10, end
a = struct('a', 0, 'b', 0);
for a.a = 1:10, end
It's an issue with the MATLAB parser. Raise it with Mathworks.

What is the standard way to optimise mutual recursion in F#/Scala?

These languages do not support mutually recursive functions optimization 'natively', so I guess it must be trampoline or.. heh.. rewriting as a loop) Do I miss something?
UPDATE: It seems that I did lie about FSharp, but I just didn't see an example of mutual tail-calls while googling
First of all, F# supports mutually recursive functions natively, because it can benefit from the tailcall instruction that's available in the .NET IL (MSDN). However, this is a bit tricky and may not work on some alternative implementations of .NET (e.g. Compact Frameworks), so you may sometimes need to deal with this by hand.
In general, I that there are a couple of ways to deal with it:
Trampoline - throw an exception when the recursion depth is too high and implement a top-level loop that handles the exception (the exception would carry information to resume the call). Instead of exception you can also simply return a value specifying that the function should be called again.
Unwind using timer - when the recursion depth is too high, you create a timer and give it a callback that will be called by the timer after some very short time (the timer will continue the recursion, but the used stack will be dropped).
The same thing could be done using a global stack that stores the work that needs to be done. Instead of scheduling a timer, you would add function to the stack. At the top-level, the program would pick functions from the stack and run them.
To give a specific example of the first technique, in F# you could write this:
type Result<´T> =
| Done of ´T
| Call of (unit -> ´T)
let rec factorial acc n =
if n = 0 then Done acc
else Call(fun () -> factorial (acc * n) (n + 1))
This can be used for mutually recursive functions as well. The imperative loop would simply call the f function stored in Call(f) until it produces Done with the final result. I think this is probably the cleanest way to implement this.
I'm sure there are other sophisticated techniques for dealing with this problem, but those are the two I know about (and that I used).
On Scala 2.8, scala.util.control.TailCalls:
import scala.util.control.TailCalls._
def isEven(xs: List[Int]): TailRec[Boolean] = if (xs.isEmpty)
done(true)
else
tailcall(isOdd(xs.tail))
def isOdd(xs: List[Int]): TailRec[Boolean] = if (xs.isEmpty)
done(false)
else
tailcall(isEven(xs.tail))
isEven((1 to 100000).toList).result
Just to have the code handy for when you Bing for F# mutual recursion:
let rec isOdd x =
if x = 1 then true else isEven (x-1)
and isEven x =
if x = 0 then true else isOdd (x-1)
printfn "%A" (isEven 10000000)
This will StackOverflow if you compile without tail calls (the default in "Debug" mode, which preserves stacks for easier debugging), but run just fine when compiled with tail calls (the default in "Release" mode). The compiler does tail calls by default (see the --tailcalls option), and .NET implementations on most platforms honor it.

== Operator and operands

I want to check whether a value is equal to 1. Is there any difference in the following lines of code
Evaluated value == 1
1 == evaluated value
in terms of the compiler execution
In most languages it's the same thing.
People often do 1 == evaluated value because 1 is not an lvalue. Meaning that you can't accidentally do an assignment.
Example:
if(x = 6)//bug, but no compiling error
{
}
Instead you could force a compiling error instead of a bug:
if(6 = x)//compiling error
{
}
Now if x is not of int type, and you're using something like C++, then the user could have created an operator==(int) override which takes this question to a new meaning. The 6 == x wouldn't compile in that case but the x == 6 would.
It depends on the programming language.
In Ruby, Smalltalk, Self, Newspeak, Ioke and many other single-dispatch object-oriented programming languages, a == b is actually a message send. In Ruby, for example, it is equivalent to a.==(b). What this means, is that when you write a == b, then the method == in the class of a is executed, but when you write b == a, then the method in the class of b is executed. So, it's obviously not the same thing:
class A; def ==(other) false end; end
class B; def ==(other) true end; end
a, b = A.new, B.new
p a == b # => false
p b == a # => true
No, but the latter syntax will give you a compiler error if you accidentally type
if (1 = evaluatedValue)
Note that today any decent compiler will warn you if you write
if (evaluatedValue = 1)
so it is mostly relevant for historical reasons.
Depends on the language.
In Prolog or Erlang, == is written = and is a unification rather than an assignment (you're asserting that the values are equal, rather then testing that they are equal or forcing them to be equal), so you can use it for an assertion if the left hand side is a constant, as explained here.
So X = 3 would unify the variable X and the value 3, whereas 3 = X would attempt to unify the constant 3 with the current value of X, and be equivalent of assert(x==3) in imperative languages.
It's the same thing
In general, it hardly matters whether you use,
Evaluated value == 1 OR 1 == evaluated value.
Use whichever appears more readable to you. I prefer if(Evaluated value == 1) because it looks more readable to me.
And again, I'd like to quote a well known scenario of string comparison in java.
Consider a String str which you have to compare with say another string "SomeString".
str = getValueFromSomeRoutine();
Now at runtime, you are not sure if str would be NULL. So to avoid exception you'll write
if(str!=NULL)
{
if(str.equals("SomeString")
{
//do stuff
}
}
to avoid the outer null check you could just write
if ("SomeString".equals(str))
{
//do stuff
}
Though this is less readable which again depends on the context, this saves you an extra if.
For this and similar questions can I suggest you find out for yourself by writing a little code, running it through your compiler and viewing the emitted asembler output.
For example, for the GNU compilers, you do this with the -S flag. For the VS compilers, the most convenient route is to run your test program in the debugger and then use the assembeler debugger view.
Sometimes in C++ they do different things, if the evaluated value is a user type and operator== is defined. Badly.
But that's very rarely the reason anyone would choose one way around over the other: if operator== is not commutative/symmetric, including if the type of the value has a conversion from int, then you have A Problem that probably wants fixing rather than working around. Brian R. Bondy's answer, and others, are probably on the mark for why anyone worries about it in practice.
But the fact remains that even if operator== is commutative, the compiler might not do exactly the same thing in each case. It will (by definition) return the same result, but it might do things in a slightly different order, or whatever.
if value == 1
if 1 == value
Is exactly the same, but if you accidentally do
if value = 1
if 1 = value
The first one will work while the 2nd one will produce an error.
They are the same. Some people prefer putting the 1 first, to void accidentally falling into the trap of typing
evaluated value = 1
which could be painful if the value on the left hand side is assignable. This is a common "defensive" pattern in C, for instance.
In C languages it's common to put the constant or magic number first so that if you forget one of the "=" of the equality check (==) then the compiler won't interpret this as an assignment.
In java, you cannot do an assignment within a boolean expression, and so for Java, it is irrelevant which order the equality operands are written in; The compiler should flag an error anyway.