I am analyzing several Sentiment Analysis algorithms to classify and prioritize call center calls.
I have been trying to look for this type of data on the web, but found nothing.
Ideally I would like to have several two-way conversations, preferably regarding baking or insurance industry.
The idea is to process this data in order to see if the customer is hangry, and needs a fast reply, or if he hasn't much urgency.
Any help is greatly appreciated.
Related
The question is about using a chat-bot framework in a research study, where one would like to measure the improvement of a rule-based decision process over time.
For example, we would like to understand how to improve the process of medical condition identification (and treatment) using the minimal set of guided questions and patient interaction.
Medical condition can be formulated into a work-flow rules by doctors; possible technical approach for such study would be developing an app or web site that can be accessed by patients, where they can ask free text questions that a predefined rule-based chat-bot will address. During the study there will be a doctor monitoring the collected data and improving the rules and the possible responses (and also provide new responses when the workflow has reached a dead-end), we do plan to collect the conversations and apply machine learning to generate improved work-flow tree (and questions) over time, however the plan is to do any data analysis and processing offline, there is no intention of building a full product.
This is a low budget academy study, and the PHD student has good development skills and data science knowledge (python) and will be accompanied by a fellow student that will work on the engineering side. One of the conversational-AI options recommended for data scientists was RASA.
I invested the last few days reading and playing with several chat-bots solutions: RASA, Botpress, also looked at Dialogflow and read tons of comparison material which makes it more challenging.
From the sources on the internet it seems that RASA might be a better fit for data science projects, however it would be great to get a sense of the real learning curve and how fast one can expect to have a working bot, and the especially one that has to continuously update the rules.
Few things to clarify, We do have data to generate the questions and in touch with doctors to improve the quality, it seems that we need a way to introduce participants with multiple choices and provide answers (not just free text), being in the research side there is also no need to align with any specific big provider (i.e. Google, Amazon or Microsoft) unless it has a benefit, the important consideration are time, money and felxability, we would like to have a working approach in few weeks (and continuously improve it) the whole experiment will run for no more than 3-4 months. We do need to be able to extract all the data. We are not sure about which channel is best for such study WhatsApp? Website? Other? and what are the involved complexities?
Any thoughts about the challenges and considerations about dealing with chat-bots would be valuable.
I have a task: to determine the sound source location.
I had some experience working with tensorflow, creating predictions on some simple features and datasets. I assume that for this task, there would be necessary to analyze the sound frequences and probably other related data on training and then prediction steps. The sound goes from the headset, so human ear is able to detect the direction.
1) Did somebody already perform that? (unfortunately couldn't find any similar project)
2) What kind of caveats could I meet while trying to achieve that?
3) Am I able to do that using this technology approach? Are there any other sound processing frameworks / technologies / open source projects that could help me ?
I am asking that here, since my research on google, github, stackoverflow didn't show me any relevant results on that specific topic, so any help is highly appreciated!
This is typically done with more traditional DSP with multiple sensors. You might want to look into time difference of arrival(TDOA) and direction of arrival(DOA). Algorithms such as GCC-PHAT and MUSIC will be helpful.
Issues that you might encounter are: DOA accuracy is function of the direct to reverberant ratio of the source, i.e. the more reverberant the environment the harder it is to determine the source location.
Also you might want to consider the number of location dimensions you want to resolve. A point in 3D space is much more difficult than a direction relative to the sensors
Using ML as an approach to this is not entirely without merit but you will have to consider what it is you would be learning, i.e. you probably don't want to learn the test rooms reverberant properties but instead the sensors spatial properties.
I am looking for a project idea in distributed processing on Unix based systems. I wish to use only the C programming language. I have to finish the project in 4 months and it's a part of my course work. Can someone help me with an idea?
Cryptography problems
Distributed Ray Tracer
Chess AI (really, AI for any game)
Large Prime Number Search
Web crawler or other search mechanism
Generic Problem Solver (push out problem definition on the fly, followed by problem data).
Note on the last one:
An example would be if you have a gaming website with lots of board games that you were coming out with all the time. You don't want to have to install new clients on all your servers every time you write a new AI for a board game, so you have a program which you can send new AIs to and then after that you can just send the game data and the pushed AI will be used to solve the problem. This is best used for problems which can be broken into smaller chunks.
It is hard to answer without knowing anything about performance, the scale of the project, what you are trying to accomplish, etc. For example, is it one task or multiple tasks? Is the project just totally open?
4 months is pretty short, but maybe some kind of physics problem or math problem. Sorting or some kind of database work might be dull but beneficial.
Check out mapreduce for ideas! I was really motivated by this work, personally.
We used distributed processing here at work, but it's such a broad field..
Yeah.
Why not write a distributed compiler. You may then present an interface for people to compile things on the fly, and it will be passed to your distribute compilenet. Java is probably well-suited, and you'll get to do fun things, like be very mindful of security and so on.
The BOINC project is always looking for help and is very interesting:
http://boinc.berkeley.edu/
If you want to leave your mark and change the way we search the web,
look into B-Trees.
B-Trees and offspring/variants are the working horse of the internet.
Google uses them extensively to index the web.
Database indexes/indices are B-Tree offspring/variants.
Every LAMP system uses a database and indexes/indices.
Also, they are used extensively in distributed VLDB (Very Large DataBases)
Perhaps you can improve existing distributed databases (Cassandra and HBase)
These are lofty goals, but for me, this would leave a lasting mark
in the way Web data is processed, indexed and stored.
Write a distributed, fault tolerant, redundant network B+Tree or B*Tree.
Read Drozdek's book Data Structures and Algorithms in C++.
It's a good survey of B-Trees.
Read about skip trees
http://www.cs.huji.ac.il/~ittaia/papers/AAY-OPODIS05.pdf
Read about Efficient B-tree Based Indexing for Cloud Data Processing
http://www.comp.nus.edu.sg/~ooibc/vldb10-cgindex.pdf
Google search "Network B+Tree"
https://www.google.com/search?rlz=1C1CHKZ_enUS431US431&sourceid=chrome&ie=UTF-8&q=Network+B%2BTree
There's a few algorithms we have for sorting data, finding the maximum and minimum, finding the shortest path between nodes etc.
I've started looking into the qualitative analysis of user-generated data and have come across latent semantic anaylsis. What other techniques exists for the analysis of textual data ... and possibly other media?
That's...a pretty broad question. Analysis of user-generated data, textual or otherwise, is typically done through specialized applications of general data mining techniques. If you're interested in learning more about this extremely wide field, I'd start with that wikipedia link, follow all its references, then hit Google Scholar. By then you should know what sorts of techniques you're interested in.
If you have a specific problem in mind, post about it; there's a community of AI guys here on SO and one of us can probably suggest an approach, or at least a more focused line of research.
I'm just starting to take an interest in visualization and I'd like to know where I can get my hands on some data, preferably real world, to see what queries and graphics I can draw from it. Its more of a personal exercise to create some pretty looking representations of that data.
After seeing this I wondered where the data came from and what else could be done from Wikipedia. Is there anyway I can obtain data from say, wikipedia?
Also, could anyone recommend any good books? I don't trust the user reviews on the amazon website :-)
You can download the raw Wikipedia data from http://download.wikimedia.org. There are many different views of the data available. The English Wikipedia is by far the largest database, and there isn't a current full dump available, but one is in progress. It will probably take months to finish and be available for download.
The most recent one was 18 GB compressed, which uncompressed to something like 2.5 TB.
A fantastic book is The Visual Display of Quantitative Information by Edward Tufte.