I'm new to C++ and programming in general, and this is my first 'project'. I'm sorry if this is not an applicable question, tell me and I will delete it right away.
I want to build a puzzle game, but instead of sliding tiles, the user swaps the number adjacent to '0', where '0' is the blank tile.
This is the code I've so far:
#include <iostream>
#include <ctime>
#include <algorithm>
using namespace std;
int grid[]= {1,2,3,4,5,6,7,8,0};
void shuffle()
{
random_shuffle(&grid[0],&grid[9]);
}
void print_puzzle()
{
shuffle();
int a=grid[0];
int b=grid[1];
int c=grid[2];
int d=grid[3];
int e=grid[4];
int f=grid[5];
int g=grid[6];
int h=grid[7];
int i=grid[8];
cout<<endl;
cout<<" "<<a<<" "<<b<<" "<<c<<endl;
cout<<" "<<d<<" "<<e<<" "<<f<<endl;
cout<<" "<<g<<" "<<h<<" "<<i<<endl;
}
bool check()
{
if (grid[0]==1&&grid[1]==2&&grid[2]==3&&grid[3]==4&&grid[4]==5&&grid[6]==7&&grid[7]==8&&grid[8]==0)
{
return true;
}
else
{
return false;
}
}
void swap_puzzle()
{
print_puzzle();
int temp=0;
cout<<"Enter the number adjacent to '0' that you want to be swapped with '0'."<<endl;
cin>> temp;
while(check==false)
{
for(int i=0; i<9; i++)
{
if(grid[i]==temp)
{
int pos_num=i;
for(int j=0; j<9; j++)
{
if(grid[j]==0)
{
int pos_0=j;
swap(grid[pos_num], grid[pos_0]);
break;
}
}
}
}
print_puzzle();
}
}
int main()
{
srand ( time(NULL) );
cout<<"The Rules:"<<endl;
cout<<"There will be a shuffled 3x3 grid with numbers from 1-8, with one blank space denoted by '0'. You can swap '0' only with adjacent numbers. The goal of this game is to rearrange the numbers in the grid in ascending order."<<endl;
cout<<endl;
cout<<"The Shuffled Grid: "<<endl;
swap_puzzle();
return 0;
}
After swapping the number that the enter user with '0', the grid just shuffles instead of swapping them as I intended. I tried fixing this problem by breaking the code into smaller functions, but that didn't help.
Any advice would be appreciated.
Your code has several problems.
At the end of your swap_puzzle() function, inside the while loop, you call print_puzzle(). print_puzzle calls shuffle(). That's why everything is shuffled instead of having just a swap operation. To fix this you must decouple these 2 functions: printing is one thing, shuffling is another one. Neither of these should trigger the other. Or MAYBE you could have the shuffle function that calls the print one at the end, to show the new status; but a "print" function should never do anything other than printing.
Then, in your check() function you have forgotten grid[5]==6. Actually this might not be important, because if all the others are at the right place, then grid[5] should automatically be right. Anyway, for what it costs, I would definitely add it.
Then, your swap_puzzle() has a problem where you call swap and then you break. You have 2 nested for loops, and you must break from both. Right now, you are breaking from the inner one (the one that uses j), which means that then the program will resume at the next iteration of i. It is possible, then, that the swap conditions are met again, as a result of the previous swap. So the user wants to make one move, and he ends up with 2. To be precise, the second one will revert the first one, and of course this is not wanted. To solve this you could add a bool variable called swapped and set it to false at the beginning of the while loop; when you reach the break, before breaking you set it to true. Then, immediately after the end of the inner loop, you check the value of swapped: if it is true you have to break again.
As your program is structured right now, you display cout and read the input with cin only once. You must put both functions inside the while loop, so that they are run every time, for every move.
In your print_puzzle function you have this line
shuffle();
That mean every time you go to print your puzzle, it shuffles it. You don't want that.
Also this line:
while(check==false)
should be
while(check()==false)
check by itself is the pointer to the function, not a call to the function.
You also want to move the request for a new number to swap inside your loop, otherwise your loop will just go on forever.
I did some minor changes and it works.
starting game may need to shuffle once.
call to shuffle() in swap_puzzle() (but don't shuffle it when printing)
put cin>> temp; in the while loop so users can input till puzzle solved
break the inner loop too(i added some vars for that)
finally call to check() and break if true. thats means solved.
--
#include <iostream>
#include <ctime>
#include <algorithm>
using namespace std;
int grid[]= {1,2,3,4,5,6,7,8,0};
void shuffle()
{
random_shuffle(&grid[0],&grid[9]);
}
void print_puzzle()
{
// shuffle();
int a=grid[0];
int b=grid[1];
int c=grid[2];
int d=grid[3];
int e=grid[4];
int f=grid[5];
int g=grid[6];
int h=grid[7];
int i=grid[8];
cout<<endl;
cout<<" "<<a<<" "<<b<<" "<<c<<endl;
cout<<" "<<d<<" "<<e<<" "<<f<<endl;
cout<<" "<<g<<" "<<h<<" "<<i<<endl;
}
bool check()
{
if (grid[0]==1&&grid[1]==2&&grid[2]==3&&grid[3]==4&&grid[4]==5&&grid[6]==7&&grid[7]==8&&grid[8]==0)
{
return true;
}
else
{
return false;
}
}
void swap_puzzle()
{
shuffle();
print_puzzle();
int temp=0;
bool swaped = false;
while(1)
{
swaped = false;
cout<<"Enter the number adjacent to '0' that you want to be swapped with '0'."<<endl;
cin>> temp;
for(int i=0; i<9; i++)
{
if(grid[i]==temp)
{
int pos_num=i;
for(int j=0; j<9; j++)
{
if(grid[j]==0)
{
int pos_0=j;
swap(grid[pos_num], grid[pos_0]);
swaped = true;
break;
}
}
}
if(swaped) break;
}
print_puzzle();
if(check()==true) break;
}
}
int main()
{
srand ( time(NULL) );
cout<<"The Rules:"<<endl;
cout<<"There will be a shuffled 3x3 grid with numbers from 1-8, with one blank space denoted by '0'. You can swap '0' only with adjacent numbers. The goal of this game is to rearrange the numbers in the grid in ascending order."<<endl;
cout<<endl;
cout<<"The Shuffled Grid: "<<endl;
swap_puzzle();
return 0;
}
Related
It is my first attempt to implement recursion with CUDA. The goal is to extract all the combinations from a set of chars "12345" using the power of CUDA to parallelize dynamically the task. Here is my kernel:
__device__ char route[31] = { "_________________________"};
__device__ char init[6] = { "12345" };
__global__ void Recursive(int depth) {
// up to depth 6
if (depth == 5) return;
// newroute = route - idx
int x = depth * 6;
printf("%s\n", route);
int o = 0;
int newlen = 0;
for (int i = 0; i<6; ++i)
{
if (i != threadIdx.x)
{
route[i+x-o] = init[i];
newlen++;
}
else
{
o = 1;
}
}
Recursive<<<1,newlen>>>(depth + 1);
}
__global__ void RecursiveCount() {
Recursive <<<1,5>>>(0);
}
The idea is to exclude 1 item (the item corresponding to the threadIdx) in each different thread. In each recursive call, using the variable depth, it works over a different base (variable x) on the route device variable.
I expect the kernel prompts something like:
2345_____________________
1345_____________________
1245_____________________
1234_____________________
2345_345_________________
2345_245_________________
2345_234_________________
2345_345__45_____________
2345_345__35_____________
2345_345__34_____________
..
2345_245__45_____________
..
But it prompts ...
·_____________
·_____________
·_____________
·_____________
·_____________
·2345
·2345
·2345
·2345
...
What I´m doing wrong?
What I´m doing wrong?
I may not articulate every problem with your code, but these items should get you a lot closer.
I recommend providing a complete example. In my view it is basically required by Stack Overflow, see item 1 here, note use of the word "must". Your example is missing any host code, including the original kernel call. It's only a few extra lines of code, why not include it? Sure, in this case, I can deduce what the call must have been, but why not just include it? Anyway, based on the output you indicated, it seems fairly evident the launch configuration of the host launch would have to be <<<1,1>>>.
This doesn't seem to be logical to me:
I expect the kernel prompts something like:
2345_____________________
The very first thing your kernel does is print out the route variable, before making any changes to it, so I would expect _____________________. However we can "fix" this by moving the printout to the end of the kernel.
You may be confused about what a __device__ variable is. It is a global variable, and there is only one copy of it. Therefore, when you modify it in your kernel code, every thread, in every kernel, is attempting to modify the same global variable, at the same time. That cannot possibly have orderly results, in any thread-parallel environment. I chose to "fix" this by making a local copy for each thread to work on.
You have an off-by-1 error, as well as an extent error in this loop:
for (int i = 0; i<6; ++i)
The off-by-1 error is due to the fact that you are iterating over 6 possible items (that is, i can reach a value of 5) but there are only 5 items in your init variable (the 6th item being a null terminator. The correct indexing starts out over 0-4 (with one of those being skipped). On subsequent iteration depths, its necessary to reduce this indexing extent by 1. Note that I've chosen to fix the first error here by increasing the length of init. There are other ways to fix, of course. My method inserts an extra _ between depths in the result.
You assume that at each iteration depth, the correct choice of items is the same, and in the same order, i.e. init. However this is not the case. At each depth, the choices of items must be selected not from the unchanging init variable, but from the choices passed from previous depth. Therefore we need a local, per-thread copy of init also.
A few other comments about CUDA Dynamic Parallelism (CDP). When passing pointers to data from one kernel scope to a child scope, local space pointers cannot be used. Therefore I allocate for the local copy of route from the heap, so it can be passed to child kernels. init can be deduced from route, so we can use an ordinary local variable for myinit.
You're going to quickly hit some dynamic parallelism (and perhaps memory) limits here if you continue this. I believe the total number of kernel launches for this is 5^5, which is 3125 (I'm doing this quickly, I may be mistaken). CDP has a pending launch limit of 2000 kernels by default. We're not hitting this here according to what I see, but you'll run into that sooner or later if you increase the depth or width of this operation. Furthermore, in-kernel allocations from the device heap are by default limited to 8KB. I don't seem to be hitting that limit, but probably I am, so my design should probably be modified to fix that.
Finally, in-kernel printf output is limited to the size of a particular buffer. If this technique is not already hitting that limit, it will soon if you increase the width or depth.
Here is a worked example, attempting to address the various items above. I'm not claiming it is defect free, but I think the output is closer to your expectations. Note that due to character limits on SO answers, I've truncated/excerpted some of the output.
$ cat t1639.cu
#include <stdio.h>
__device__ char route[31] = { "_________________________"};
__device__ char init[7] = { "12345_" };
__global__ void Recursive(int depth, const char *oroute) {
char *nroute = (char *)malloc(31);
char myinit[7];
if (depth == 0) memcpy(myinit, init, 6);
else memcpy(myinit, oroute+(depth-1)*6, 6);
myinit[6] = 0;
if (nroute == NULL) {printf("oops\n"); return;}
memcpy(nroute, oroute, 30);
nroute[30] = 0;
// up to depth 6
if (depth == 5) return;
// newroute = route - idx
int x = depth * 6;
//printf("%s\n", nroute);
int o = 0;
int newlen = 0;
for (int i = 0; i<(6-depth); ++i)
{
if (i != threadIdx.x)
{
nroute[i+x-o] = myinit[i];
newlen++;
}
else
{
o = 1;
}
}
printf("%s\n", nroute);
Recursive<<<1,newlen>>>(depth + 1, nroute);
}
__global__ void RecursiveCount() {
Recursive <<<1,5>>>(0, route);
}
int main(){
RecursiveCount<<<1,1>>>();
cudaDeviceSynchronize();
}
$ nvcc -o t1639 t1639.cu -rdc=true -lcudadevrt -arch=sm_70
$ cuda-memcheck ./t1639
========= CUDA-MEMCHECK
2345_____________________
1345_____________________
1245_____________________
1235_____________________
1234_____________________
2345__345________________
2345__245________________
2345__235________________
2345__234________________
2345__2345_______________
2345__345___45___________
2345__345___35___________
2345__345___34___________
2345__345___345__________
2345__345___45____5______
2345__345___45____4______
2345__345___45____45_____
2345__345___45____5______
2345__345___45____5_____5
2345__345___45____4______
2345__345___45____4_____4
2345__345___45____45____5
2345__345___45____45____4
2345__345___35____5______
2345__345___35____3______
2345__345___35____35_____
2345__345___35____5______
2345__345___35____5_____5
2345__345___35____3______
2345__345___35____3_____3
2345__345___35____35____5
2345__345___35____35____3
2345__345___34____4______
2345__345___34____3______
2345__345___34____34_____
2345__345___34____4______
2345__345___34____4_____4
2345__345___34____3______
2345__345___34____3_____3
2345__345___34____34____4
2345__345___34____34____3
2345__345___345___45_____
2345__345___345___35_____
2345__345___345___34_____
2345__345___345___45____5
2345__345___345___45____4
2345__345___345___35____5
2345__345___345___35____3
2345__345___345___34____4
2345__345___345___34____3
2345__245___45___________
2345__245___25___________
2345__245___24___________
2345__245___245__________
2345__245___45____5______
2345__245___45____4______
2345__245___45____45_____
2345__245___45____5______
2345__245___45____5_____5
2345__245___45____4______
2345__245___45____4_____4
2345__245___45____45____5
2345__245___45____45____4
2345__245___25____5______
2345__245___25____2______
2345__245___25____25_____
2345__245___25____5______
2345__245___25____5_____5
2345__245___25____2______
2345__245___25____2_____2
2345__245___25____25____5
2345__245___25____25____2
2345__245___24____4______
2345__245___24____2______
2345__245___24____24_____
2345__245___24____4______
2345__245___24____4_____4
2345__245___24____2______
2345__245___24____2_____2
2345__245___24____24____4
2345__245___24____24____2
2345__245___245___45_____
2345__245___245___25_____
2345__245___245___24_____
2345__245___245___45____5
2345__245___245___45____4
2345__245___245___25____5
2345__245___245___25____2
2345__245___245___24____4
2345__245___245___24____2
2345__235___35___________
2345__235___25___________
2345__235___23___________
2345__235___235__________
2345__235___35____5______
2345__235___35____3______
2345__235___35____35_____
2345__235___35____5______
2345__235___35____5_____5
2345__235___35____3______
2345__235___35____3_____3
2345__235___35____35____5
2345__235___35____35____3
2345__235___25____5______
2345__235___25____2______
2345__235___25____25_____
2345__235___25____5______
2345__235___25____5_____5
2345__235___25____2______
2345__235___25____2_____2
2345__235___25____25____5
2345__235___25____25____2
2345__235___23____3______
2345__235___23____2______
2345__235___23____23_____
2345__235___23____3______
2345__235___23____3_____3
2345__235___23____2______
2345__235___23____2_____2
2345__235___23____23____3
2345__235___23____23____2
2345__235___235___35_____
2345__235___235___25_____
2345__235___235___23_____
2345__235___235___35____5
2345__235___235___35____3
2345__235___235___25____5
2345__235___235___25____2
2345__235___235___23____3
2345__235___235___23____2
2345__234___34___________
2345__234___24___________
2345__234___23___________
2345__234___234__________
2345__234___34____4______
2345__234___34____3______
2345__234___34____34_____
2345__234___34____4______
2345__234___34____4_____4
2345__234___34____3______
2345__234___34____3_____3
2345__234___34____34____4
2345__234___34____34____3
2345__234___24____4______
2345__234___24____2______
2345__234___24____24_____
2345__234___24____4______
2345__234___24____4_____4
2345__234___24____2______
2345__234___24____2_____2
2345__234___24____24____4
2345__234___24____24____2
2345__234___23____3______
2345__234___23____2______
2345__234___23____23_____
2345__234___23____3______
2345__234___23____3_____3
2345__234___23____2______
2345__234___23____2_____2
2345__234___23____23____3
2345__234___23____23____2
2345__234___234___34_____
2345__234___234___24_____
2345__234___234___23_____
2345__234___234___34____4
2345__234___234___34____3
2345__234___234___24____4
2345__234___234___24____2
2345__234___234___23____3
2345__234___234___23____2
2345__2345__345__________
2345__2345__245__________
2345__2345__235__________
2345__2345__234__________
2345__2345__345___45_____
2345__2345__345___35_____
2345__2345__345___34_____
2345__2345__345___45____5
2345__2345__345___45____4
2345__2345__345___35____5
2345__2345__345___35____3
2345__2345__345___34____4
2345__2345__345___34____3
2345__2345__245___45_____
2345__2345__245___25_____
2345__2345__245___24_____
2345__2345__245___45____5
2345__2345__245___45____4
2345__2345__245___25____5
2345__2345__245___25____2
2345__2345__245___24____4
2345__2345__245___24____2
2345__2345__235___35_____
2345__2345__235___25_____
2345__2345__235___23_____
2345__2345__235___35____5
2345__2345__235___35____3
2345__2345__235___25____5
2345__2345__235___25____2
2345__2345__235___23____3
2345__2345__235___23____2
2345__2345__234___34_____
2345__2345__234___24_____
2345__2345__234___23_____
2345__2345__234___34____4
2345__2345__234___34____3
2345__2345__234___24____4
2345__2345__234___24____2
2345__2345__234___23____3
2345__2345__234___23____2
1345__345________________
1345__145________________
1345__135________________
1345__134________________
1345__1345_______________
1345__345___45___________
1345__345___35___________
1345__345___34___________
1345__345___345__________
1345__345___45____5______
1345__345___45____4______
1345__345___45____45_____
1345__345___45____5______
1345__345___45____5_____5
1345__345___45____4______
1345__345___45____4_____4
1345__345___45____45____5
1345__345___45____45____4
1345__345___35____5______
1345__345___35____3______
1345__345___35____35_____
1345__345___35____5______
1345__345___35____5_____5
1345__345___35____3______
1345__345___35____3_____3
1345__345___35____35____5
1345__345___35____35____3
1345__345___34____4______
1345__345___34____3______
1345__345___34____34_____
1345__345___34____4______
1345__345___34____4_____4
1345__345___34____3______
1345__345___34____3_____3
1345__345___34____34____4
1345__345___34____34____3
1345__345___345___45_____
1345__345___345___35_____
1345__345___345___34_____
1345__345___345___45____5
1345__345___345___45____4
1345__345___345___35____5
1345__345___345___35____3
1345__345___345___34____4
1345__345___345___34____3
1345__145___45___________
1345__145___15___________
1345__145___14___________
1345__145___145__________
1345__145___45____5______
1345__145___45____4______
1345__145___45____45_____
1345__145___45____5______
1345__145___45____5_____5
1345__145___45____4______
1345__145___45____4_____4
1345__145___45____45____5
1345__145___45____45____4
1345__145___15____5______
1345__145___15____1______
1345__145___15____15_____
1345__145___15____5______
1345__145___15____5_____5
1345__145___15____1______
1345__145___15____1_____1
1345__145___15____15____5
1345__145___15____15____1
1345__145___14____4______
1345__145___14____1______
1345__145___14____14_____
1345__145___14____4______
1345__145___14____4_____4
1345__145___14____1______
1345__145___14____1_____1
1345__145___14____14____4
1345__145___14____14____1
1345__145___145___45_____
1345__145___145___15_____
1345__145___145___14_____
1345__145___145___45____5
1345__145___145___45____4
1345__145___145___15____5
1345__145___145___15____1
1345__145___145___14____4
1345__145___145___14____1
1345__135___35___________
1345__135___15___________
1345__135___13___________
1345__135___135__________
1345__135___35____5______
1345__135___35____3______
1345__135___35____35_____
1345__135___35____5______
1345__135___35____5_____5
1345__135___35____3______
1345__135___35____3_____3
1345__135___35____35____5
1345__135___35____35____3
1345__135___15____5______
1345__135___15____1______
1345__135___15____15_____
1345__135___15____5______
1345__135___15____5_____5
1345__135___15____1______
1345__135___15____1_____1
1345__135___15____15____5
1345__135___15____15____1
1345__135___13____3______
1345__135___13____1______
1345__135___13____13_____
1345__135___13____3______
1345__135___13____3_____3
1345__135___13____1______
1345__135___13____1_____1
1345__135___13____13____3
1345__135___13____13____1
1345__135___135___35_____
1345__135___135___15_____
1345__135___135___13_____
1345__135___135___35____5
1345__135___135___35____3
1345__135___135___15____5
1345__135___135___15____1
1345__135___135___13____3
1345__135___135___13____1
1345__134___34___________
1345__134___14___________
1345__134___13___________
1345__134___134__________
1345__134___34____4______
1345__134___34____3______
1345__134___34____34_____
1345__134___34____4______
1345__134___34____4_____4
1345__134___34____3______
1345__134___34____3_____3
1345__134___34____34____4
1345__134___34____34____3
1345__134___14____4______
1345__134___14____1______
1345__134___14____14_____
1345__134___14____4______
1345__134___14____4_____4
1345__134___14____1______
1345__134___14____1_____1
1345__134___14____14____4
1345__134___14____14____1
1345__134___13____3______
1345__134___13____1______
1345__134___13____13_____
1345__134___13____3______
1345__134___13____3_____3
1345__134___13____1______
1345__134___13____1_____1
1345__134___13____13____3
1345__134___13____13____1
1345__134___134___34_____
1345__134___134___14_____
1345__134___134___13_____
1345__134___134___34____4
1345__134___134___34____3
1345__134___134___14____4
1345__134___134___14____1
1345__134___134___13____3
1345__134___134___13____1
1345__1345__345__________
1345__1345__145__________
1345__1345__135__________
1345__1345__134__________
1345__1345__345___45_____
1345__1345__345___35_____
1345__1345__345___34_____
1345__1345__345___45____5
1345__1345__345___45____4
1345__1345__345___35____5
1345__1345__345___35____3
1345__1345__345___34____4
1345__1345__345___34____3
1345__1345__145___45_____
1345__1345__145___15_____
1345__1345__145___14_____
1345__1345__145___45____5
1345__1345__145___45____4
1345__1345__145___15____5
1345__1345__145___15____1
1345__1345__145___14____4
1345__1345__145___14____1
1345__1345__135___35_____
1345__1345__135___15_____
1345__1345__135___13_____
1345__1345__135___35____5
1345__1345__135___35____3
1345__1345__135___15____5
1345__1345__135___15____1
1345__1345__135___13____3
1345__1345__135___13____1
1345__1345__134___34_____
1345__1345__134___14_____
1345__1345__134___13_____
1345__1345__134___34____4
1345__1345__134___34____3
1345__1345__134___14____4
1345__1345__134___14____1
1345__1345__134___13____3
1345__1345__134___13____1
1245__245________________
1245__145________________
1245__125________________
1245__124________________
1245__1245_______________
1245__245___45___________
1245__245___25___________
1245__245___24___________
1245__245___245__________
1245__245___45____5______
1245__245___45____4______
1245__245___45____45_____
1245__245___45____5______
1245__245___45____5_____5
1245__245___45____4______
1245__245___45____4_____4
1245__245___45____45____5
1245__245___45____45____4
1245__245___25____5______
1245__245___25____2______
1245__245___25____25_____
1245__245___25____5______
1245__245___25____5_____5
1245__245___25____2______
1245__245___25____2_____2
1245__245___25____25____5
1245__245___25____25____2
1245__245___24____4______
1245__245___24____2______
1245__245___24____24_____
1245__245___24____4______
1245__245___24____4_____4
1245__245___24____2______
1245__245___24____2_____2
1245__245___24____24____4
1245__245___24____24____2
1245__245___245___45_____
1245__245___245___25_____
1245__245___245___24_____
1245__245___245___45____5
1245__245___245___45____4
1245__245___245___25____5
1245__245___245___25____2
1245__245___245___24____4
1245__245___245___24____2
1245__145___45___________
1245__145___15___________
1245__145___14___________
1245__145___145__________
1245__145___45____5______
1245__145___45____4______
1245__145___45____45_____
1245__145___45____5______
1245__145___45____5_____5
1245__145___45____4______
...
1235__1235__235___25_____
1235__1235__235___23_____
1235__1235__235___35____5
1235__1235__235___35____3
1235__1235__235___25____5
1235__1235__235___25____2
1235__1235__235___23____3
1235__1235__235___23____2
1235__1235__135___35_____
1235__1235__135___15_____
1235__1235__135___13_____
1235__1235__135___35____5
1235__1235__135___35____3
1235__1235__135___15____5
1235__1235__135___15____1
1235__1235__135___13____3
1235__1235__135___13____1
1235__1235__125___25_____
1235__1235__125___15_____
1235__1235__125___12_____
1235__1235__125___25____5
1235__1235__125___25____2
1235__1235__125___15____5
1235__1235__125___15____1
1235__1235__125___12____2
1235__1235__125___12____1
1235__1235__123___23_____
1235__1235__123___13_____
1235__1235__123___12_____
1235__1235__123___23____3
1235__1235__123___23____2
1235__1235__123___13____3
1235__1235__123___13____1
1235__1235__123___12____2
1235__1235__123___12____1
1234__234________________
1234__134________________
1234__124________________
1234__123________________
1234__1234_______________
1234__234___34___________
1234__234___24___________
1234__234___23___________
1234__234___234__________
1234__234___34____4______
1234__234___34____3______
1234__234___34____34_____
1234__234___34____4______
1234__234___34____4_____4
1234__234___34____3______
1234__234___34____3_____3
1234__234___34____34____4
1234__234___34____34____3
1234__234___24____4______
1234__234___24____2______
1234__234___24____24_____
1234__234___24____4______
1234__234___24____4_____4
1234__234___24____2______
1234__234___24____2_____2
1234__234___24____24____4
1234__234___24____24____2
1234__234___23____3______
1234__234___23____2______
1234__234___23____23_____
1234__234___23____3______
1234__234___23____3_____3
1234__234___23____2______
1234__234___23____2_____2
1234__234___23____23____3
1234__234___23____23____2
1234__234___234___34_____
1234__234___234___24_____
1234__234___234___23_____
1234__234___234___34____4
1234__234___234___34____3
1234__234___234___24____4
1234__234___234___24____2
1234__234___234___23____3
1234__234___234___23____2
1234__134___34___________
1234__134___14___________
1234__134___13___________
1234__134___134__________
1234__134___34____4______
1234__134___34____3______
1234__134___34____34_____
1234__134___34____4______
1234__134___34____4_____4
1234__134___34____3______
1234__134___34____3_____3
1234__134___34____34____4
1234__134___34____34____3
1234__134___14____4______
1234__134___14____1______
1234__134___14____14_____
1234__134___14____4______
1234__134___14____4_____4
1234__134___14____1______
1234__134___14____1_____1
1234__134___14____14____4
1234__134___14____14____1
1234__134___13____3______
1234__134___13____1______
1234__134___13____13_____
1234__134___13____3______
1234__134___13____3_____3
1234__134___13____1______
1234__134___13____1_____1
1234__134___13____13____3
1234__134___13____13____1
1234__134___134___34_____
1234__134___134___14_____
1234__134___134___13_____
1234__134___134___34____4
1234__134___134___34____3
1234__134___134___14____4
1234__134___134___14____1
1234__134___134___13____3
1234__134___134___13____1
1234__124___24___________
1234__124___14___________
1234__124___12___________
1234__124___124__________
1234__124___24____4______
1234__124___24____2______
1234__124___24____24_____
1234__124___24____4______
1234__124___24____4_____4
1234__124___24____2______
1234__124___24____2_____2
1234__124___24____24____4
1234__124___24____24____2
1234__124___14____4______
1234__124___14____1______
1234__124___14____14_____
1234__124___14____4______
1234__124___14____4_____4
1234__124___14____1______
1234__124___14____1_____1
1234__124___14____14____4
1234__124___14____14____1
1234__124___12____2______
1234__124___12____1______
1234__124___12____12_____
1234__124___12____2______
1234__124___12____2_____2
1234__124___12____1______
1234__124___12____1_____1
1234__124___12____12____2
1234__124___12____12____1
1234__124___124___24_____
1234__124___124___14_____
1234__124___124___12_____
1234__124___124___24____4
1234__124___124___24____2
1234__124___124___14____4
1234__124___124___14____1
1234__124___124___12____2
1234__124___124___12____1
1234__123___23___________
1234__123___13___________
1234__123___12___________
1234__123___123__________
1234__123___23____3______
1234__123___23____2______
1234__123___23____23_____
1234__123___23____3______
1234__123___23____3_____3
1234__123___23____2______
1234__123___23____2_____2
1234__123___23____23____3
1234__123___23____23____2
1234__123___13____3______
1234__123___13____1______
1234__123___13____13_____
1234__123___13____3______
1234__123___13____3_____3
1234__123___13____1______
1234__123___13____1_____1
1234__123___13____13____3
1234__123___13____13____1
1234__123___12____2______
1234__123___12____1______
1234__123___12____12_____
1234__123___12____2______
1234__123___12____2_____2
1234__123___12____1______
1234__123___12____1_____1
1234__123___12____12____2
1234__123___12____12____1
1234__123___123___23_____
1234__123___123___13_____
1234__123___123___12_____
1234__123___123___23____3
1234__123___123___23____2
1234__123___123___13____3
1234__123___123___13____1
1234__123___123___12____2
1234__123___123___12____1
1234__1234__234__________
1234__1234__134__________
1234__1234__124__________
1234__1234__123__________
1234__1234__234___34_____
1234__1234__234___24_____
1234__1234__234___23_____
1234__1234__234___34____4
1234__1234__234___34____3
1234__1234__234___24____4
1234__1234__234___24____2
1234__1234__234___23____3
1234__1234__234___23____2
1234__1234__134___34_____
1234__1234__134___14_____
1234__1234__134___13_____
1234__1234__134___34____4
1234__1234__134___34____3
1234__1234__134___14____4
1234__1234__134___14____1
1234__1234__134___13____3
1234__1234__134___13____1
1234__1234__124___24_____
1234__1234__124___14_____
1234__1234__124___12_____
1234__1234__124___24____4
1234__1234__124___24____2
1234__1234__124___14____4
1234__1234__124___14____1
1234__1234__124___12____2
1234__1234__124___12____1
1234__1234__123___23_____
1234__1234__123___13_____
1234__1234__123___12_____
1234__1234__123___23____3
1234__1234__123___23____2
1234__1234__123___13____3
1234__1234__123___13____1
1234__1234__123___12____2
1234__1234__123___12____1
========= ERROR SUMMARY: 0 errors
$
The answer given by Robert Crovella is correct at the 5th point, the mistake was in the using of init in every recursive call, but I want to clarify something that can be useful for other beginners with CUDA.
I used this variable because when I tried to launch a child kernel passing a local variable I always got the exception: Error: a pointer to local memory cannot be passed to a launch as an argument.
As I´m C# expert developer I´m not used to using pointers (Ref does the low-level-work for that) so I thought there was no way to do it in CUDA/c programming.
As Robert shows in its code it is possible copying the pointer with memalloc for using it as a referable argument.
Here is a kernel simplified as an example of deep recursion.
__device__ char init[6] = { "12345" };
__global__ void Recursive(int depth, const char* route) {
// up to depth 6
if (depth == 5) return;
//declaration for a referable argument (point 6)
char* newroute = (char*)malloc(6);
memcpy(newroute, route, 5);
int o = 0;
int newlen = 0;
for (int i = 0; i < (6 - depth); ++i)
{
if (i != threadIdx.x)
{
newroute[i - o] = route[i];
newlen++;
}
else
{
o = 1;
}
}
printf("%s\n", newroute);
Recursive <<<1, newlen>>>(depth + 1, newroute);
}
__global__ void RecursiveCount() {
Recursive <<<1, 5>>>(0, init);
}
I don't add the main call because I´m using ManagedCUDA for C# but as Robert says it can be figured-out how the call RecursiveCount is.
About ending arrays of char with /0 ... sorry but I don't know exactly what is the benefit; this code works fine without them.
I am getting multiple declaration error in this c++ program
#include<iostream.h>
#include<conio.h>
void main ()
{ clrscr();
int a[10][10],r,q,i;
cout<<"enter how many rows and colomn you want in the matrix:";
cin>>n;
cout<<"enter the matrix \n";
for(int r=0;r<n;++r)
{
for(int q=0;q<n;++q)
{
cin>>a[r][q];
}
}
for(int i=0;i<n;i++)
{ cout<<"\n the diagnol elements are:";
cout<<a[n-i-1][i];
}
getch();
}
it is a program for finding diagnol elements in a matrix
That's because you have already declared the r, q, i as int at line 5 as below:
int a[10][10],r,q,i;
^^^^^
While your three for loops, again re-declares for e.g. like this:
for(int r=0;r<n;++r)
^^^
So it re-declares the same variable in above case it's r, while the other for loop q and i which is not allowed.
Two ways to solve the problem:
a. Either you remove int from your for loop.
b. Either you remove declaration of variables used in for loop from line 5.
The only issue i am seeing is, you are not declaring the variable "n" . Other than that, everything seems to be fine.
I am making a simple Led program that will be turned into a library for my project. I have created four methods that will allow you to A) Setup as many Led pins as you want and make them as Outputs. B) Flash the Led lights at a customized time. C) Turn On Leds. D) Turn Off Leds. Everything is working if i just run the methods in the void loop(). For example:
Void loop(){
flashLed(pinNum, 2000);
turnOf(pinNum);
turnOn(pinNum);
}
If i run the above code it works fine, however it keeps looping as its obviously in a loop. So i decided to start the serial com by using Serial.begin(9600) in the setup(), and then testing for the serial com and used a switch case statement in order to appropriately implement these methods. What am i doing wrong here? i get no errors at all. When i type into the serial monitor nothing happens, i believe my logic is fine but that is why i am here. When anything is typed into the serial monitor, the code runs the default in the switch case statement and that is all. I have tried using while, if to no avail. Also tested the inverse of serial which would be !serial.available() Here is my code:
//Define the pin numbers
byte pinNum[] = {4, 3, 2};
void setup() {
//Setup the ledPins
ledSetup(pinNum);
Serial.begin(9600);
}
void loop() {
while(Serial.available() > 0){
//Read the incoming byte
byte ledStatus = Serial.read();
switch (ledStatus){
case 0:
turnOff(pinNum);
Serial.println("The Leds Have Been Turned Off");
break;
case 1:
turnOn(pinNum);
Serial.println("The Leds Have Been Turned On");
break;
case 2:
flashLed(pinNum, 1000); //This will make the Led blink for half a second
Serial.println("The Leds Will Begin Flashing");
break;
default:
flashLed(pinNum, 1000); //This will make the Led blink for half a second
break;
}
}
}
//Method to declare the pins as output
void ledSetup(byte ledPins[]){
for (int i = 0; i <= sizeof(ledPins); i++){
pinMode(ledPins[i], OUTPUT);
}
}
//Method to blink the Led light/lights
void flashLed(byte ledBlink[], int duration){
//Time is divided by two because it takes 2 seconds
//to run the sketch
for (int i = 0; i <= sizeof(ledBlink); i++){
digitalWrite(ledBlink[i], HIGH);
delay(duration/2);
digitalWrite(ledBlink[i], LOW);
delay(duration/2);
}
}
//Method to turn Leds off
void turnOff(byte ledOff[]){
for(int i = 0; i <= sizeof(ledOff); i++){
digitalWrite(ledOff[i], LOW);
}
}
//Method to turn Leds On
void turnOn(byte turnOn[]){
for (int i = 0; i <= sizeof(turnOn); i ++){
digitalWrite(turnOn[i], HIGH);
}
}
The serial monitor sends symbols encoded in the ASCII format.
e.g. when you enter 0, Serial.read() returns 48, which is the ASCII code for digit 0. Since the value 48 is not listed in the following cases, the default branch is taken:
case 0: ...
case 1: ...
case 2: ...
default: ...
There are many solutions to your problem.
1. change case conditions to match what you are sending:
case '0': ...
case '1': ...
case '2': ...
2. replace Serial.read() with Serial.parseInt():
int ledStatus = Serial.parseInt();
This will actually work with more general inputs, e.g. 123, but it will return 0 if there is anything different from a digit in the input buffer.
3. wrap Serial.read() within atoi():
byte ledStatus = atoi(Serial.read());
This is somewhat more limited than both of previous options, since now you can only have 10 cases in your switch.
so i have this method that finds the number of factors of a given number. It works fine and everything but i am using a for loop and my teacher is wanting me to change it into a while loop to make it more efficient, ive tried to change it but i keep getting endless loop here is the code i have using a for loop what might be a good to change it to a while loop without using a break and only having one return statement in the whole method
public static int numberOfFactors(int num){
int i;
int total=0;
for(i=1;i<=num;i++){
if(num%i==0)
total++;
}
return (total);}
I fail to see how:
i = 1;
while(i <= num) {
// do things
i++;
}
Is any more efficient than:
for( i=1; i<=num; i++) {
// do things
}
As far as I can tell? It's not! I'd love to know why your teacher thinks it is.
That said, here's what you can do to make it more efficient:
Calculate the square root of num and put it in sqrtnum as an integer, rounded down.
Change your loop to for(i=1; i<sqrtnum; i++) (note <, not <=)
If num%i==0, increment total by 2, instead of 1.
After the loop, check if sqrtnum*sqrtnum == num - if so, increment total by 1.
In this way, you only have to loop through a fraction of the numbers ;)
Not any more efficient but....
public static int numberOfFactors(int num) {
int total = 0;
int i = 1;
while(i <= num) {
if(num%i == 0)
total++;
i++;
}
return total;
}
I have a model code on which kcachegrind/callgrind reports strange results. It is kind of dispatcher function. The dispatcher is called from 4 places; each call says, which actual do_J function to run (so the first2 will call only do_1 and do_2 and so on)
Source (this is a model of actual code)
#define N 1000000
int a[N];
int do_1(int *a) { int i; for(i=0;i<N/4;i++) a[i]+=1; }
int do_2(int *a) { int i; for(i=0;i<N/2;i++) a[i]+=2; }
int do_3(int *a) { int i; for(i=0;i<N*3/4;i++) a[i]+=3; }
int do_4(int *a) { int i; for(i=0;i<N;i++) a[i]+=4; }
int dispatcher(int *a, int j) {
if(j==1) do_1(a);
else if(j==2) do_2(a);
else if(j==3) do_3(a);
else do_4(a);
}
int first2(int *a) { dispatcher(a,1); dispatcher(a,2); }
int last2(int *a) { dispatcher(a,4); dispatcher(a,3); }
int inner2(int *a) { dispatcher(a,2); dispatcher(a,3); }
int outer2(int *a) { dispatcher(a,1); dispatcher(a,4); }
int main(){
first2(a);
last2(a);
inner2(a);
outer2(a);
}
Compiled with gcc -O0; Callgrinded with valgrind --tool=callgrind; kcachegrinded with kcachegrind and qcachegrind-0.7.
Here is a full callgraph of the application. All paths to do_J go through dispatcher and this is good (the do_1 is just hided as too fast, but it is here really, just left to do_2)
Lets focus on do_1 and check, who called it (this picture is incorrect):
And this is very strange, I think, only first2 and outer2 called do_1 but not all.
Is it a limitation of callgrind/kcachegrind? How can I get accurate callgraph with weights (proportional to running time of every function, with and without its childs)?
Yes, this is limitation of callgrind format. It doesn't store full trace; it only stores parent-child calls information.
There is a google-perftools project with pprof/libprofiler.so CPU profiler, http://google-perftools.googlecode.com/svn/trunk/doc/cpuprofile.html . libprofiler.so can get profile with calltraces and it will store every trace event with full backtrace. pprof is converter of libprofile's output to graphic formats or to callgrind format. In full view the result will be the same as in kcachegrind; but if you will focus on some function, e.g. do_1 using pprof's option focus; it will show accurate calltree when focused on function.