Related
I would like to build a safe dynamic select statement that can handle multiple WHERE clauses.
For example the base SQL would look like:
SELECT * FROM Books Where Type='Novel'
I would pass the function something like:
SafeDynamicSQL("author,=,Herman Melville","pages,>,1000");
Which would sanitize inputs and concatenate like:
SELECT * FROM Books Where Type='Novel' AND author=#author AND pages>#pages
The function would sanitize the column name by checking against an array of predefined column names. The operator would only be allowed to be >,<,=. The value would be added as a normal paramater.
Would this still be vulnerable to SQL injection?
There will be some string manipulation and small loops which will affect performance but my thoughts are that this will only take a few milliseconds compared to the request which on average take 200ms. Would this tax the server more than I am thinking if these requests are made about once a second?
I know this isn't best practice by any means, but it will greatly speed up development. Please give me any other reasons why this could be a bad idea.
It looks like you're reinventing any number of existing ORM solutions which offer a similar API for creating WHERE clauses.
The answer to your question hinges on what you mean by "The value would be added as a normal paramater." If by that you mean performing string concatenation to produce the string you showed then yes, that would still be subject to SQL injection attack. If you mean using an actual parameterized query then you would be safe. In the later case, you would produce something like
SELECT * FROM Books Where Type='Novel' AND author=? AND pages > ?
and then bind that to a list of values like ['Herman Melville', 1000]. Exactly what it would look like depends on what programming language you're using.
Finally, if you pursue this path I would strongly recommend changing from comma-delimited arguments to three separate arguments, you'd save yourself a lot of programming time.
Pretty much any code that appends together (or interpolates) strings to create SQL is bad form from a security point of view, and is probably subject to some SQLi attack vector. Just use bound parameters and avoid the entire problem; avoiding SQL injection is super-easy.
Let me start by saying I am biased; I hate dynamic SQL under all circumstances. That being said, is this scenario considered good practice for dynamic SQL?
sqlDataSourceObject.SelectCommand = String.Concat(
"select top ", maxRows,
" col1, ",
" col2 as myData, ",
" '' as blah, ",
" col3 as Fromperson ",
" 'Corporate' as toPerson, ",
" Convert(char(11), orderDate) as orderDate, ",
" carrier, ",
sqlString1,
sqlString2,
sqlString3 + " AND areaCode = '" + currArea + "'"
);
This query may run once, then change the value for sqlString1,2,3, or currArea and run it again against a different SqlDataSource.
This code makes me angry to read. Its hard to read, it can change with the sqlString variables, I cant run it without copy/pasting into SSMS and I have to go track down several variables to make a single change.
But, like I said I am biased so I am asking you. Is this code, written in 2001 before LINQ, as good as a stored proc or some other technology, generally OK from a good practice perspective?
If not, how would you have improved it (remember no LINQ, this is 2001).
A point of clarification:
Dynamic SQL is normally taken to mean that the semantics of the statement change based on some external factor. In other words, the column names or even the base table(s) might be altered. This was common to do for pivot queries in the old days.
It's kind of hard to tell because I don't know what's going into those awfully-named sqlStringX parameters, but I think that what I'm seeing here is really just inline SQL which happens to be riddled with SQL injection vulnerabilities. It is trivially easy to parameterize. Fix this ASAP, please. Inline SQL is fine but there is no reason to be using raw strings instead of parameters.
Stored procedures would be one idea of how to better handle these types of queries. Granted the stored proc may just execute what the parameters pass but that would be my suggestion for one way to improve that code so that the DBA can know what indexes may be useful to help optimize the query. SQL injection attacks as #Jarrod Roberson points out are also quite likely with this kind of code.
PS: I wrote this kind of code back in 1998 where I had ~20 possible parameters in writing a "Find Customer" routine that was one of my first assignments out of university so I do understand where this kind of code can originate.
I'd use a stored procedure myself. But in any case, no matter what, use parameters. They way you' have it there is not secure at all, and as you say, makes me angry to look at. :-)
Here's one reference that might help (not stored procs per se, but still uses parms)
http://www.asp.net/data-access/tutorials/using-parameterized-queries-with-the-sqldatasource-vb
I was writing some Unit tests last week for a piece of code that generated some SQL statements.
I was trying to figure out a regex to match SELECT, INSERT and UPDATE syntax so I could verify that my methods were generating valid SQL, and after 3-4 hours of searching and messing around with various regex editors I gave up.
I managed to get partial matches but because a section in quotes can contain any characters it quickly expands to match the whole statement.
Any help would be appreciated, I'm not very good with regular expressions but I'd like to learn more about them.
By the way it's C# RegEx that I'm after.
Clarification
I don't want to need access to a database as this is part of a Unit test and I don't wan't to have to maintain a database to test my code. which may live longer than the project.
Regular expressions can match languages only a finite state automaton can parse, which is very limited, whereas SQL is a syntax. It can be demonstrated you can't validate SQL with a regex. So, you can stop trying.
SQL is a type-2 grammar, it is too powerful to be described by regular expressions. It's the same as if you decided to generate C# code and then validate it without invoking a compiler. Database engine in general is too complex to be easily stubbed.
That said, you may try ANTLR's SQL grammars.
As far as I know this is beyond regex and your getting close to the dark arts of BnF and compilers.
http://savage.net.au/SQL/
Same things happens to people who want to do correct syntax highlighting. You start cramming things into regex and then you end up writing a compiler...
I had the same problem - an approach that would work for all the more standard sql statements would be to spin up an in-memory Sqlite database and issue the query against it, if you get back a "table does not exist" error, then your query parsed properly.
Off the top of my head: Couldn't you pass the generated SQL to a database and use EXPLAIN on them and catch any exceptions which would indicate poorly formed SQL?
Have you tried the lazy selectors. Rather than match as much as possible, they match as little as possible which is probably what you need for quotes.
To validate the queries, just run them with SET NOEXEC ON, that is how Entreprise Manager does it when you parse a query without executing it.
Besides if you are using regex to validate sql queries, you can be almost certain that you will miss some corner cases, or that the query is not valid from other reasons, even if it's syntactically correct.
I suggest creating a database with the same schema, possibly using an embedded sql engine, and passing the sql to that.
I don't think that you even need to have the schema created to be able to validate the statement, because the system will not try to resolve object_name etc until it has successfully parsed the statement.
With Oracle as an example, you would certainly get an error if you did:
select * from non_existant_table;
In this case, "ORA-00942: table or view does not exist".
However if you execute:
select * frm non_existant_table;
Then you'll get a syntax error, "ORA-00923: FROM keyword not found where expected".
It ought to be possible to classify errors into syntax parsing errors that indicate incorrect syntax and errors relating to tables name and permissions etc..
Add to that the problem of different RDBMSs and even different versions allowing different syntaxes and I think you really have to go to the db engine for this task.
There are ANTLR grammars to parse SQL. It's really a better idea to use an in memory database or a very lightweight database such as sqlite. It seems wasteful to me to test whether the SQL is valid from a parsing standpoint, and much more useful to check the table and column names and the specifics of your query.
The best way is to validate the parameters used to create the query, rather than the query itself. A function that receives the variables can check the length of the strings, valid numbers, valid emails or whatever. You can use regular expressions to do this validations.
public bool IsValid(string sql)
{
string pattern = #"SELECT\s.*FROM\s.*WHERE\s.*";
Regex rgx = new Regex(pattern, RegexOptions.IgnoreCase);
return rgx.IsMatch(sql);
}
I am assuming you did something like .\* try instead [^"]* that will keep you from eating the whole line. It still will give false positives on cases where you have \ inside your strings.
I have a query that I would like to filter in different ways at different times. The way I have done this right now by placing parameters in the criteria field of the relevant query fields, however there are many cases in which I do not want to filter on a given field but only on the other fields. Is there any way in which a wildcard of some sort can be passed to the criteria parameter so that I can bypass the filtering for that particular call of the query?
If you construct your query like so:
PARAMETERS ParamA Text ( 255 );
SELECT t.id, t.topic_id
FROM SomeTable t
WHERE t.id Like IIf(IsNull([ParamA]),"*",[ParamA])
All records will be selected if the parameter is not filled in.
Note the * wildcard with the LIKE keyword will only have the desired effect in ANSI-89 Query Mode.
Many people mistakenly assume the wildcard character in Access/Jet is always *. Not so. Jet has two wildcards: % in ANSI-92 Query Mode and * in ANSI-89 Query Mode.
ADO is always ANSI-92 and DAO is always ANSI-89 but the Access interface can be either.
When using the LIKE keyword in a database object (i.e. something that will be persisted in the mdb file), you should to think to yourself: what would happen if someone used this database using a Query Mode other than the one I usually use myself? Say you wanted to restrict a text field to numeric characters only and you'd written your Validation Rule like this:
NOT LIKE "*[!0-9]*"
If someone unwittingly (or otherwise) connected to your .mdb via ADO then the validation rule above would allow them to add data with non-numeric characters and your data integrity would be shot. Not good.
Better IMO to always code for both ANSI Query Modes. Perhaps this is best achieved by explicitly coding for both Modes e.g.
NOT LIKE "*[!0-9]*" AND NOT LIKE "%[!0-9]%"
But with more involved Jet SQL DML/DDL, this can become very hard to achieve concisely. That is why I recommend using the ALIKE keyword, which uses the ANSI-92 Query Mode wildcard character regardless of Query Mode e.g.
NOT ALIKE "%[!0-9]%"
Note ALIKE is undocumented (and I assume this is why my original post got marked down). I've tested this in Jet 3.51 (Access97), Jet 4.0 (Access2000 to 2003) and ACE (Access2007) and it works fine. I've previously posted this in the newsgroups and had the approval of Access MVPs. Normally I would steer clear of undocumented features myself but make an exception in this case because Jet has been deprecated for nearly a decade and the Access team who keep it alive don't seem interested in making deep changes to the engines (or bug fixes!), which has the effect of making the Jet engine a very stable product.
For more details on Jet's ANSI Query modes, see About ANSI SQL query mode.
Back to my previous exampe in your previous question. Your parameterized query is a string looking like that:
qr = "Select Tbl_Country.* From Tbl_Country WHERE id_Country = [fid_country]"
depending on the nature of fid_Country (number, text, guid, date, etc), you'll have to replace it with a joker value and specific delimitation characters:
qr = replace(qr,"[fid_country]","""*""")
In order to fully allow wild cards, your original query could also be:
qr = "Select Tbl_Country.* From Tbl_Country _
WHERE id_Country LIKE [fid_country]"
You can then get wild card values for fid_Country such as
qr = replace(qr,"[fid_country]","G*")
Once you're done with that, you can use the string to open a recordset
set rs = currentDb.openRecordset(qr)
I don't think you can. How are you running the query?
I'd say if you need a query that has that many open variables, put it in a vba module or class, and call it, letting it build the string every time.
I'm not sure this helps, because I suspect you want to do this with a saved query rather than in VBA; however, the easiest thing you can do is build up a query line by line in VBA, and then creating a recordset from it.
A quite hackish way would be to re-write the saved query on the fly and then access that; however, if you have multiple people using the same DB you might run into conflicts, and you'll confuse the next developer down the line.
You could also programatically pass default value to the query (as discussed in you r previous question)
Well, you can return non-null values by passing * as the parameter for fields you don't wish to use in the current filter. In Access 2003 (and possibly earlier and later versions), if you are using like [paramName] as your criterion for a numeric, Text, Date, or Boolean field, an asterisk will display all records (that match the other criteria you specify). If you want to return null values as well, then you can use like [paramName] or Is Null as the criterion so that it returns all records. (This works best if you are building the query in code. If you are using an existing query, and you don't want to return null values when you do have a value for filtering, this won't work.)
If you're filtering a Memo field, you'll have to try another approach.
If I remove all the ' characters from a SQL query, is there some other way to do a SQL injection attack on the database?
How can it be done? Can anyone give me examples?
Yes, there is. An excerpt from Wikipedia
"SELECT * FROM data WHERE id = " + a_variable + ";"
It is clear from this statement that the author intended a_variable to be a number correlating to the "id" field. However, if it is in fact a string then the end user may manipulate the statement as they choose, thereby bypassing the need for escape characters. For example, setting a_variable to
1;DROP TABLE users
will drop (delete) the "users" table from the database, since the SQL would be rendered as follows:
SELECT * FROM DATA WHERE id=1;DROP TABLE users;
SQL injection is not a simple attack to fight. I would do very careful research if I were you.
Yes, depending on the statement you are using. You are better off protecting yourself either by using Stored Procedures, or at least parameterised queries.
See Wikipedia for prevention samples.
I suggest you pass the variables as parameters, and not build your own SQL. Otherwise there will allways be a way to do a SQL injection, in manners that we currently are unaware off.
The code you create is then something like:
' Not Tested
var sql = "SELECT * FROM data WHERE id = #id";
var cmd = new SqlCommand(sql, myConnection);
cmd.Parameters.AddWithValue("#id", request.getParameter("id"));
If you have a name like mine with an ' in it. It is very annoying that all '-characters are removed or marked as invalid.
You also might want to look at this Stackoverflow question about SQL Injections.
Yes, it is definitely possible.
If you have a form where you expect an integer to make your next SELECT statement, then you can enter anything similar:
SELECT * FROM thingy WHERE attributeID=
5 (good answer, no problem)
5; DROP table users; (bad, bad, bad...)
The following website details further classical SQL injection technics: SQL Injection cheat sheet.
Using parametrized queries or stored procedures is not any better. These are just pre-made queries using the passed parameters, which can be source of injection just as well. It is also described on this page: Attacking Stored Procedures in SQL.
Now, if you supress the simple quote, you prevent only a given set of attack. But not all of them.
As always, do not trust data coming from the outside. Filter them at these 3 levels:
Interface level for obvious stuff (a drop down select list is better than a free text field)
Logical level for checks related to data nature (int, string, length), permissions (can this type of data be used by this user at this page)...
Database access level (escape simple quote...).
Have fun and don't forget to check Wikipedia for answers.
Parameterized inline SQL or parameterized stored procedures is the best way to protect yourself. As others have pointed out, simply stripping/escaping the single quote character is not enough.
You will notice that I specifically talk about "parameterized" stored procedures. Simply using a stored procedure is not enough either if you revert to concatenating the procedure's passed parameters together. In other words, wrapping the exact same vulnerable SQL statement in a stored procedure does not make it any safer. You need to use parameters in your stored procedure just like you would with inline SQL.
Also- even if you do just look for the apostrophe, you don't want to remove it. You want to escape it. You do that by replacing every apostrophe with two apostrophes.
But parameterized queries/stored procedures are so much better.
Since this a relatively older question, I wont bother writing up a complete and comprehensive answer, since most aspects of that answer have been mentioned here by one poster or another.
I do find it necessary, however, to bring up another issue that was not touched on by anyone here - SQL Smuggling. In certain situations, it is possible to "smuggle" the quote character ' into your query even if you tried to remove it. In fact, this may be possible even if you used proper commands, parameters, Stored Procedures, etc.
Check out the full research paper at http://www.comsecglobal.com/FrameWork/Upload/SQL_Smuggling.pdf (disclosure, I was the primary researcher on this) or just google "SQL Smuggling".
. . . uh about 50000000 other ways
maybe somthing like 5; drop table employees; --
resulting sql may be something like:
select * from somewhere where number = 5; drop table employees; -- and sadfsf
(-- starts a comment)
Yes, absolutely: depending on your SQL dialect and such, there are many ways to achieve injection that do not use the apostrophe.
The only reliable defense against SQL injection attacks is using the parameterized SQL statement support offered by your database interface.
Rather that trying to figure out which characters to filter out, I'd stick to parametrized queries instead, and remove the problem entirely.
It depends on how you put together the query, but in essence yes.
For example, in Java if you were to do this (deliberately egregious example):
String query = "SELECT name_ from Customer WHERE ID = " + request.getParameter("id");
then there's a good chance you are opening yourself up to an injection attack.
Java has some useful tools to protect against these, such as PreparedStatements (where you pass in a string like "SELECT name_ from Customer WHERE ID = ?" and the JDBC layer handles escapes while replacing the ? tokens for you), but some other languages are not so helpful for this.
Thing is apostrophe's maybe genuine input and you have to escape them by doubling them up when you are using inline SQL in your code. What you are looking for is a regex pattern like:
\;.*--\
A semi colon used to prematurely end the genuine statement, some injected SQL followed by a double hyphen to comment out the trailing SQL from the original genuine statement. The hyphens may be omitted in the attack.
Therefore the answer is: No, simply removing apostrophes does not gaurantee you safety from SQL Injection.
I can only repeat what others have said. Parametrized SQL is the way to go. Sure, it is a bit of a pain in the butt coding it - but once you have done it once, then it isn't difficult to cut and paste that code, and making the modifications you need. We have a lot of .Net applications that allow web site visitors specify a whole range of search criteria, and the code builds the SQL Select statement on the fly - but everything that could have been entered by a user goes into a parameter.
When you are expecting a numeric parameter, you should always be validating the input to make sure it's numeric. Beyond helping to protect against injection, the validation step will make the app more user friendly.
If you ever receive id = "hello" when you expected id = 1044, it's always better to return a useful error to the user instead of letting the database return an error.