How does HTTPS work, and does it use cookies? - apache

I have a basic understanding that HTTPS creates a secure connection between a user and a server using some sort of unique identifying code. However, if the server sends this code (or whatever it is) to the user, can't that code be intercepted and that renders the entire HTTPS just as vulnerable as HTTP?
I'm a total newbie to this area, and am interested in how it works. The current answers on Stack Overflow don't give me the full answer.

I'm not sure it's fair to say there isn't any answer on Stack Overflow to the question of how SSL works:
https://stackoverflow.com/search?q=how+does+ssl+work
Cookies work the same way over HTTPS that they do over HTTP. HTTPS is just HTTP, but with the server and client using a "shared secret" symmetric encryption key to encrypt and decrypt the data they exchange so that a third party can't intercept and read the communication.
So having said that, and largely agreeing with the advice to start reading at Wikipedia, why don't I take a quick stab at doing this a modest disservice by explaining it as briefly as I know how.
First, "SSL" is now officially obsolete since the POODLE exploit in SSLv3 will never be fixed. SSL (Secure Sockets Layer) has been succeeded by TLS (Transport Layer Security) and has really become a generic although somewhat inaccurate term referring to secure HTTP (HTTPS).
Still, SSL and TLS both use the same underlying technologies and general ideas.
There are several technologies involved, all of them complicated, and the interplay between them is complicated.
But here are the high points, jammed into a little nutshell.
SSL/TLS fundamentally relies on public/private key asymmetric encryption, in order to securely exchange a shared secret--an ephemeral (disposable, short-lived) symmetric encryption key known only to the server and the client, which the client and server then use to encrypt the messages they exchange from that point forward.
Asymmetric encryption is a big, quite sciencey topic all by itself.
a·sym·me·try
āˈsimətrē/
noun: lack of equality or equivalence between parts or aspects of something; lack of symmetry.
Assymetric encryption utilizes paired private and public keys which are derived mathematically from very large, mathematically related prime numbers.
The encryption is asymmetric because if a message is encrypted with the "private" key, it can only be decrypted by the "public" key, and vice-versa.
It is therefore absolutely critical to keep the private key private. The public key can be (indeed is) published to the world
TLS uses asymmetric encryption and a handshake protocol to create and exchange a symmetric session encryption key that is known only to the server and the client.
Asymmetric encryption is an order of magnitude slower than symmetric encryption, making it unsuitable for encrypting data for real-time communication. The other thing making it unsuitable for encrypting data for two-way communication is that anything encrypted with the server's private key can be decrypted by anybody who has possession of the public key. By definition, that's everybody.
So, committing an atrocious act of willful oversimplification; the handshake protocol basically allows the client to send an encrypted challenge that only the server can decrypt, the server can then sign that challenge with its private key and return it. The client knows both which challenge it sent, and how to verify the server's signature using the server's public key. Once the client and the server are satisfied that their communication has not been tampered with, they can securely exchange an ephemeral symmetric encryption key. Some steps may be combined to reduce the number of round trips, and different versions of the protocol, you know, differ somewhat in the details... (willfully oversimplified, remember).
There are a number of encryption protocols and key lengths that can be used, and these specifics are negotiated during the key exchange. Let's just say the client and server agree to AES encryption with a 256 bit key.
So, once the client and server have securely exchanged that 256 bit key (the size of which they negotiated), they can encrypt and exchange data securely at will using that key with the AES algorithm that they also negotiated. No other party has that ephemeral encryption key, thus no other party can decrypt the data they exchange.
Symmetric encryption is much, much faster than asymmetric encryption. As such, the performance impact of encrypting/decrypting large data transfers is virtually irrelevant.
The expensive part of HTTPS is in the initial protocol handshake and key exchange since it requires multiple round trips and a couple of rounds of super expensive asymmetric encryption. Because of this, HTTPS communication benefits enormously when the client and server reuse the same connection for multiple requests. For information on that, look into the SPDY protocol.
Finally, you should research forward secrecy and/or perfect forward secrecy. What forward secrecy does is to exchange an ephemeral public/private keypair during the handshake, then use that ephemeral public/private key pair to handshake and exchange a private symmetric key and quickly discard the ephemeral private/public keypair. What this accomplishes is protection against replay and decryption of a captured HTTPS session in the future if the web server's private key is compromised.

There are protocols that allow two parties to arrive at a shared encryption key, even though all communication between them is in the clear.
Check out the Wikipedia article on how this happens during the SSL handshake.
After they have this session key, this is used to encrypt the payload messages.

Related

Encryption over TLS

I need to implement end-to-end encryption. To do this, I'm thinking of exchanging public keys between two users, then encrypt messages with the public key, and send the message back to the user via the server. Does it make sense to do this messaging over TLS, or would it be redundant? Since the data will be encrypted, I think TLS will be superfluous here, but I doubt it.
It's not only about encryption. You also need a trustful third party to authenticate the website in order to avoid DNS poisoning. That's the job of an SSL/TLS certificate.

Public-Key Cryptography for Secret Key Distribution vs. Diffie–Hellman

Let's say we have a Server with a private and public key, the latter available to all Clients and we have a Client who doesn't have any asymmetrical keys of his own. We want to establish secure communication between the Server and the Client and the Client has to ensure Server's authenticity. This is a pretty common situation.
Now, it is my understanding that private/public key pair is usually used in such situations only to ensure authenticity (our Client can use the Server's public key to verify the Server's authenticity). To ensure two-sided communication between the Server and the Client Diffie–Hellman key exchange is used and the communication is then based on a shared secret key.
I can't stop by wonder why Diffie-Hellman is used at all in such situations. From what I understand Public-Key Cryptography could be used to both ensure authenticity AND to share a secret key between the Client and the Server. Server can send to Client a message encoded with its private key and Client can decode it using Server's public key to confirm its identity. Furthermore Client could use the Server's public key to send a new random secret key to the Server. Only Server would know this secret key as only Server knows his private key. I know some people advice not to use a public key to both encode and decode but nobody says why.
Obviously if both Client and Server had their own public/private keys they wouldn't even need to share any secret keys, but that's not a typical situation.
So... to sum it up. Why is Diffie-Hellman used instead of Secret Key Distribution with a Public-Key Cryptography? Any advantages?
I can't stop by wonder why Diffie-Hellman is used at all in such
situations. From what I understand Public-Key Cryptography could be
used to both ensure authenticity AND to share a secret key between the
Client and the Server.
Both Diffie-Hellman and RSA key exchange (where RSA is used for encryption) can be used with SSL/TLS. This depends on the cipher suite.
Server can send to Client a message encoded with its private key and
Client can decode it using Server's public key to confirm its
identity.
This is indeed what happens with DH key exchange with RSA or DSS authentication: the server signs its DH parameters using its private key, and the client can verify the signature.
Furthermore Client could use the Server's public key to send a new
random secret key to the Server. Only Server would know this secret
key as only Server knows his private key.
This is more or less what happens with RSA key exchange: the client encrypts the pre-master secret, which only the server can decipher.
You can read about all this in the Authentication and Key Exchange section of the TLS specification (leaving aside the anonymous key exchange). The choice of cipher suites (See Appendix A.5 and C), which depends on how the client and the server have been configured, will determine the key exchange mechanism used.
Fixed DH exchange is rather rare as far as I know. Ephemeral DH (DHE cipher suites) is more common. It can provider "Perfect Forward Secrecy": even if attackers get hold of the private key, they can't decipher existing traffic, since they would also need to have the DH parameters, which are not the same for all connections. However, this has a cost in terms of performance. You can find more on this topic in this article.
. Why is Diffie-Hellman used instead of Secret Key Distribution with a Public-Key Cryptography? Any advantages?
Ans: let's assume a hacker has been tracking the all messages exchanged between client and server and saving messages , but he can not decrypt those messages because he does not know the shared symmetric key. If private key of server is revealed then in case of diffie-hellman hacker still can not decrypt the messages because diffie Hellman algorithm never send the secret key on wire instead client and server agrees on same key without sharing, it's kind of key agreement algorithm not sharing. To attack diffie Hellman man in the middle should be live and should know server private key which was used for authentication. But in our case hacker has past diffie Hellman messages, so he can not use man in the middle attack. Meanwhile server changes it's private key so there is no damage. But if we use RSA keys to share secret key then on the disclosure of server's private key hacker can get all session symmetric secret keys and can decrypt all the past messages.

SSL: can the secret key be sniffed before the actual encryption begins?

I was looking into SSL and some of the steps that are involved to set up an encrypted connection between a server and a client computer.
I understand that a server key and certificate is sent to the browser, and that a secret code is being calculated, like they say in the following video:
http://www.youtube.com/watch?v=iQsKdtjwtYI
around 5:22, they talk about a master secret code that is being calculated to start talking in an encrypted way.
My question now is: before the connection is actually encrypted (the handshake phase), all communication between the server and the client can be sniffed by a packet sniffer. Isn't it then possible to sniff the encryption key or other data that is used to set up a secure connection?
From the Wikipedia summary, I think the key part you're interested in is:
The client responds with a ClientKeyExchange message, which may
contain a PreMasterSecret, public key, or nothing. (Again, this
depends on the selected cipher.) This PreMasterSecret is encrypted
using the public key of the server certificate.
This is why the public key is so important. If you use the wrong public key, you're vulnerable to man in middle attacks.
Witness the justified worry whenever bogus SSL certificate issues (e.g. DigiNotar).
The secret key itself isn't transmitted at all, so it can't be sniffed. It is computed independently at both ends. The materials it is computed from is called a PreMasterSecret which is encrypted with the public key of the server certificate. So unless the server's private key has been compromised the secret key can be neither sniffed nor calculated independently.

One way SSL is one way encryption?

If one way SSL is used (Server Certificate authentication) then data sent from client gets encrypted using Public key of the server certificate. So privacy protection is available for data sent from client. My questions are
Does this mean that in One way SSL data sent from Server to client is not encrypted and sent as plain text ?
For both server to client and client to server communications the data/message is not signed and so tamper protection or data integrity is not assured. Are there any other means to achieve data integrity while using SSL based transport security and not Message security options ?
One way SSL just means that the server does not validate the identity of the client. It has no effect on any of the other security properties of SSL.
While the SSL protocol is a bit complex, the basic gist of what happens is this: The client generates a random key, encrypts it so that only the server can decrypt it, and sends it to the server. The server and client now have a shared secret that can be used to encrypt and validate the communications in both directions.
The server has no idea of the client's identity, but otherwise, the encryption and message validation is two way.
Update:
1) Yes, encryption both ways is symmetric and uses a shared secret generated during session setup.
2) With a shared secret, message integrity is trivial to assure. You just ensure the message has a particular form. For example, I can prefix every message I send with a sequence number and append a checksum onto it before encryption. You decrypt it with the shared secret and validate the sequence number and checksum. How can an attacker substitute or modify the message without knowing the shared secret and still keep the sequence number and checksum intact?
In SSL, two things happen:
First, a session key is negotiated using something like the
Diffie-Hellman method. That generates a shared session key but never
transmits the key between parties.
Second, that session key is used in a normal symmetric encryption for
the duration of the connection.
SSL does use public/private in one way, because an X509 certificate is
used to identify at least one end of the connection. Those certs are
signed using an asymmetric key pair.
Extracted from How can SSL secure a two-way communication with only one key-pair?

Client-side SSL theoretical question

I work at company X and we want to engage in a B2B transaction with company Y. In doing so, Y is requiring client side authentication; they already provide server-side authentication - so this would be a mutual SSL transaction.
My understanding is that I simply need to provide my CA-signed cert as part of my client side HTTPS communication. In doing so, asymmetric cryptographic guarantees (i.e., public/private key technology) ensures that I am who I claim I am - in effect, it is not possible to impersonate me. (the root CA has ensured I am who I am, that is why they signed my cert, and it's possible to prove that I didn't "manufacture" the certificate).
Here's my question: is this all I need to provide company Y?
Alternatively, do I have to provide them with another key in advance, so that they can ensure I am not a rogue who happens to have "gotten a hold" of a root-signed certificate for me (company X)? It would seem that if one has to provide this extra key to all parties he wishes to engage with on the client side, it would seem to make client-side SSL not as scalable as server-side SSL. My guess is that it's not possible for one to "get a hold" of a client side cert; that the actual transmission of the client side cert is further encoded by some state of the transaction (which is not reverse-engineerable, feasibly).
Does this make sense and am I right or am I wrong? If I'm wrong, does Y in effect need to get an "extra" pre-communication key from every party that connects to it? (which they want to verify)?
Thanks.
===
Thanks for the responses below, at least the first two have been helpful so far (others may arrive later).
Let me talk in a bit more detail about my technical concern.
Suppose company Y attempts to "re-use" my client side cert to impersonate me in another client-side transaction with another company (say "Z"). Is this even possible? I am thinking - again, perhaps poorly stated - that some part of the transmission of the client side certificate prevents the entire key from being compromised, i.e., that is not technically feasible to "re-use" a client certificate received because you could not (feasibly) reverse engineer the communication which communicate the client cert.
If this is not the case, couldn't Y re-use the cert, impersonating X when communicating (client-side) to Z?
ps: I realize that security is never 100%, just trying to understand what is technically feasible here and what is not.
Thanks very much!
===
Further technical details, I appreciate any additional input very much - this has been very quite helpful.
From a layman's point of view, my concern is that when a client sends his client cert, what is he sending? Well, he has to encrypt that cert using his private key. He sends the ciphertext with the public key, and then a receiving party can use that public key to decrypt the private-key-encoded payload, right? That makes sense, but then I wonder -- what prevents someone from hearing that communication and simply re-using the private key encoded payload in a replay attack. Just replay the exact ones and zeroes sent.
Here's what I believe prevents that -- it can be found in the TLS RFC, in multiple places, but for example in F.1.1:
F.1.1. Authentication and key exchange
TLS supports three authentication modes: authentication of both
parties, server authentication with an unauthenticated client, and
total anonymity. Whenever the server is authenticated, the channel is
secure against man-in-the-middle attacks, but completely anonymous
sessions are inherently vulnerable to such attacks. Anonymous
servers cannot authenticate clients. If the server is authenticated,
its certificate message must provide a valid certificate chain
leading to an acceptable certificate authority. Similarly,
authenticated clients must supply an acceptable certificate to the
server. Each party is responsible for verifying that the other's
certificate is valid and has not expired or been revoked.
The general goal of the key exchange process is to create a
pre_master_secret known to the communicating parties and not to
attackers. The pre_master_secret will be used to generate the
master_secret (see Section 8.1). The master_secret is required to
generate the certificate verify and finished messages, encryption
keys, and MAC secrets (see Sections 7.4.8, 7.4.9 and 6.3). By sending
a correct finished message, parties thus prove that they know the
correct pre_master_secret.
I believe it's the randomization associated with the session that prevents these replay attacks.
Sound right or am I confusing things further?
As long as you keep the private key safe (and the CA keeps their signing key safe), "company Y" doesn't need any other information to authenticate you. In other words, they can be sure that a request really came from the subject named in the certificate.
However, this doesn't mean that you are authorized to do anything. In practice, most systems that use client certificates have an "out of band" process where you provide the "subject" distinguished name that is specified in the client certificate, and the system assigns some privileges to that name.
In fact, because of some practical limitations, some systems actually associate the privileges with the certificate itself (using the issuer's name and the certificate serial number). This means that if you get a new certificate, you might have to re-enroll it, even if it has the same subject name.
A certificate only assures a relying party you have a certain name. That party needs some additional mechanism to determine what you are allowed to do.
Unlike authentication mechanisms based on "secret" (symmetric) keys—e.g., passwords—a server only needs public information for asymmetric authentication. A private signing key should never be disclosed; it's certainly not necessary for client authentication.
With symmetric, password-based authentication, the client and server get access to the same string of bytes—the secret key. With public-key cryptography, only the public key of a key pair is disclosed. The corresponding private key is never disclosed, and no practical method for figuring out the private key from the public key has been discovered.
As long as you keep your private key safe, the server at company Y cannot forge requests that appear to come from you.
Client authentication replay attacks are defeated by requiring the client to digitally sign a message that includes a number randomly generated by the server for each handshake (this is the "random" member of the "ServerHello" message). If the packet used to authenticate the client in a previous session were re-used, a server will be unable to verify the signature, and won't authenticate the replay attack.
RFC 2246, Appendix F.1.1.2 might be a more helpful reference—especially the third paragraph:
When RSA is used for key exchange, clients are authenticated using
the certificate verify message (see Section 7.4.8). The client signs
a value derived from the master_secret and all preceding handshake
messages. These handshake messages include the server certificate,
which binds the signature to the server, and ServerHello.random,
which binds the signature to the current handshake process.
Your client-side certificate (or more precisely its private key), is only as secure as your company's online and/or physical security let it be.
For extremely secure relations (which typically do not have the requirement of scaling much), it may be acceptable that the provider of the service requires an extra element in the protocol which allows them to identify your site (and more often than not, to identify a particular computer or individual within the company, which is something client certs do not fully do.)
This of course brings the question: what is warranty that this extra bit of authentication device will be more securely held by your company? (as compared to the client-site certificate itself). The standard response for this is that these extra bits of security elements are typically non-standards, possibly associated with physical devices, machine IDs and such, and are therefore less easily transportable (and the know-how about these is less common: hackers know what RSA files to look for, and what they look like, what do they know of the genesis and usage of the KBD-4.hex file ?)
Extra question: Can Y make use of my client-side certificate elsewhere?
No they [normally] cannot! The integrity of this certificate lies in your safe keeping of its private key (and, yes, a similar safekeeping from the certificate providers...). Therefore, unless they are responsible for installing the said certificate, or unless their software on your client (if any) somehow "hacks" into certificate-related storage / files / system dlls, they should not be able to reuse the certificate. That is they cannot reuse the certificate any more easily (which is theoretically NP hard) than anyone that, say, would sniff the packets related to authentication as the client establishes a session with the Y site.
Extra questionS ;-)
- What is the nature of the client cert?
- Man-in-the-middle concerns...
Before getting to these, let's clear a few things up...
The question seems to imply TLS (Transport Layer Security) which is indeed a good protocol for this purpose, but for sake of understanding, the keys (public and private) from the certs (server's and client's) could well be used with alternative protocols. And also, TLS itself offers several different possible encryption algorithms for its support (one of the initial phases of a TLS session is for both parties to negotiate the set of algorithms they'll effectively use).
Also, what goes without saying... (also goes if you say it): the respective private keys are NEVER transmitted in any fashion, encoded or not. The confusion sometimes arise because after the authentication phase, the parties exchange a key (typically for a symmetric cipher) that is used in subsequent exchanges. This key is typically randomly generated, and of totally different nature than the RSA keys whether public or private!
In a simplified fashion, the client's certificate contains the following information:
- The Certificate Authority (CA aka issuer)
- The "owner" of the certificate (aka Subject)
- Validity date range
- the PUBLIC key of the certificate
In more detail, the certificates are typically found in an X.509 wrapper (? envelope), which contains additional fields such as version number, algorithm used, certificate ID, a certificate signature (very important to ensure that the certificate received wasn't tempered with). The X.509 also provide for optional attributes, and is also used for transmitting other types of certificate-related data (such as the CRL)
Therefore the certificate's content allow the recipient to:
- ensure the certificate itself was not tempered with
- ensure that the issuer of the certificate is one accepted by the recipient
- ensure that the certificate is valid/current and not revoked
- know the public key and its underlying size and algorithm
With regards to man-in-the-middle concerns, in particular the possibility of "re-playing" a possibly recorded packet exchange from a previous session.
The protocol uses variable, possibly random MACs (Message Authentication Codes) for that purpose. Essentially, during the negotiation phase, one of the parties (not sure which, may vary...) produces a random string of sorts and sends it to the other party. This random value is then used, as-is (or, typically, with some extra processing by an algorithm known by both parties) as part of the messages sent. It being encoded with the private key of teh sending party, if the the receiving party can decode it (with sender's public key) and recognize the (again variable) MAC, then it is proof that the sender is in possession of the private key of the certificate, and hence its identity is asserted. Because the MACs vary each time, pre-recorded sessions are of no help (for this simple purpose).