I am using Firebird 3.0.4 (both in Windows and Linux) and I have the following procedure that clearly demonstrates my problem with floating point numbers, and that also demonstrates a possible workaround:
create or alter procedure test_float returns (res double precision,
res1 double precision,
res2 double precision)
as
declare variable z1 double precision;
declare variable z2 double precision;
declare variable z3 double precision;
begin
z1=15;
z2=1.1;
z3=0.49;
res=z1*z2*z3; /* one expects res to be 8.085, but internally, inside the procedure
it is represented as 8.084999999999.
The procedure-internal representation is repaired when then
res is sent to the output of the procedure, but the procedure-internal
representation (which is worng) impacts the further calculations */
res1=round(res, 2);
res2=round(round(res, 8), 2);
suspend;
end
On can see the result of the procedure with:
select proc.res, proc.res1, proc.res2
from test_float proc
The result is
RES RES1 RES2
8,085 8,08 8,09
But one can expect that RES2 should be 8.09.
One can clearly see that the internal representation of the res contains 8.0849999 (e.g. one can assign res to the exception message and then raise this exception), it is repaired during output but it leads to the failed calculations when such variable is used in the further calculations.
RES2 demonstrates the repair: I can always apply ROUND(..., 8) to repair the internal representation. I am ready to go with this solution, but my question is - is it acceptable workaround (when the outer ROUND is with strictly less than 5 decimal places) or is there better workaround.
All my tests pass with this workaround, but the feeling is bad.
Of course, I know the minimum that every programmer should know about floats (there is article about that) and I know that one should not use double for business calculations.
This is an inherent problem with calculating with floating point numbers, and is not specific to Firebird. The problem is that the calculation of 15 * 1.1 * 0.49 using double precision numbers is not exactly 8.085. In fact, if you would do 8.085 - RES, you'd get a value that is (approximately) 1.776356839400251e-015 (although likely your client will just present it as 0.00000000).
You would get similar results in different languages. For example, in Java
DecimalFormat df = new DecimalFormat("#.00");
df.format(15 * 1.1 * 0.49);
will also produce 8.08 for exactly the same reason.
Also, if you would change the order of operations, you would get a different result. For example using 15 * 0.49 * 1.1 would produce 8.085 and round to 8.09, so the actual results would match your expectations.
Given round itself also returns a double precision, this isn't really a good way to handle this in your SQL code, because the rounded value with a higher number of decimals might still yield a value slightly less than what you'd expect because of how floating point numbers work, so the double round may still fail for some numbers even if the presentation in your client 'looks' correct.
If you purely want this for presentation purposes, it might be better to do this in your frontend, but alternatively you could try tricks like adding a small value and casting to decimal, for example something like:
cast(RES + 1e-10 as decimal(18,2))
However this still has rounding issues, because it is impossible to distinguish between values that genuinely are 8.08499999999 (and should be rounded down to 8.08), and values where the result of calculation just happens to be 8.08499999999 in floating point, while it would be 8.085 in exact numerics (and therefor need to be rounded up to 8.09).
In a similar vein, you could try to use double casting to decimal (eg cast(cast(res as decimal(18,3)) as decimal(18,2))), or casting the decimal and then rounding (eg round(cast(res as decimal(18,3)), 2). This would be a bit more consistent than double rounding because the first cast will convert to exact numerics, but again this has similar downside as mentioned above.
Although you don't want to hear this answer, if you want exact numeric semantics, you shouldn't be using floating point types.
I am trying to subtract the value from two textboxes in Visual Studio 2012.
Example input and results:
textbox1 - textbox2 = label1
25.9 - 25.4 = 0.50 (it's ok)
173.07 - 173 = 0.06 (should be 0.07)
144.98 - 142.12 = 2.85 (should be 2.86)
My code (I tried all three lines separately):
label1.text = (Convert.ToDouble(textbox1.text) - Convert.ToDouble(textbox2.text)).ToString
label1.text = (CDbl(textbox1.text) - CDbl(textbox2.text)).ToString
label1.text = (Val(textbox1.text) - Val(textbox2.text)).ToString
This error (may be not an error) occurs some times, not every time.
What am I missing here? And what should I use instead of "CDbl" ?
what should I use instead of "CDbl" ?
When you start with the a string, the best option is Double.Parse() or Double.TryParse(), depending on the possibility for bad data.
But even that's not enough in this case. Computers use something called IEEE754 for floating point arithmetic. This scheme for encoding floating point numbers is designed as an efficient way to represent numbers in binary, and further has direct support in CPUs for arithmetic operations, meaning it is much faster than any available alternative (it's not even close). Pretty much every programming platform uses it.
The downside is there is some loss of precision. When treated as IEEE754 doubles, 173.07-173 produces .69999999.
You can solve this in two ways:
Round the results. This isn't an option when using division, but with just addition and subtraction you can track significant digits and round to get exact results. This is a pain, though.
Use the Decimal type. Decimal isn't perfect, but is does have a much greater degree of precision (at the cost of some performance), and for your sample data produces exact results.
In short, try this code:
label1.text = (Decimal.Parse(textbox1.text) - Decimal.Parse(textbox2.text)).ToString()
I´m trying to write a negative number like this:
} else if ([newsCondition.temperature floatValue] == -7.0f) {
but that won´t trigger it and the negative symbol is black whilst the number is blue. How can I write the number so that it triggers when temperature isEqual to -7.0 degrees?
The way you've written your negative number (-7.0f) is correct.
As for your code not triggering: the floating point representation of numbers is not perfect, and you have to be aware of these issues when comparing floating point numbers to each other.
If you're wanting to compare two floating point numbers, you can use an 'epsilon' (i.e. acceptable error) for the comparison. This is basically checking if the numbers are close enough.
Simple naive example:
#define EPSILON 0.00001f
float x = 0.09f;
float y = 0.0901f;
if (abs(y - x) < EPSILON) {
// close enough to be considered equal;
// do something here
}
For more discussion, see http://floating-point-gui.de/errors/comparison/
Floating-point arithmetic is considered an esoteric subject by many
people. This is rather surprising because floating-point is ubiquitous
in computer systems. Almost every language has a floating-point
datatype; computers from PCs to supercomputers have floating-point
accelerators; most compilers will be called upon to compile
floating-point algorithms from time to time; and virtually every
operating system must respond to floating-point exceptions such as
overflow. This paper presents a tutorial on those aspects of
floating-point that have a direct impact on designers of computer
systems. It begins with background on floating-point representation
and rounding error, continues with a discussion of the IEEE
floating-point standard, and concludes with numerous examples of how
computer builders can better support floating-point.
From What Every Computer Scientist Should Know About Floating-Point Arithmetic
This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
Trouble with floats in Objective-C
I have broken this problem down to about as simple as i can get it. Feel free to try the same thing and tell me if you get the same error and what solution you might have. I have already tried it on several computers.
float total = 200000.0f + 154196.8f;
NSLog(#"total: %f", total);
The output is:
total: 354196.812500
If anyone has any sort of logical explanation, feel free to share it.
I'd suggest you brush up on your floats
http://www.altdevblogaday.com/2012/05/20/thats-not-normalthe-performance-of-odd-floats/
If you need higher precision use a double.
Additionally http://randomascii.wordpress.com/2012/03/08/float-precisionfrom-zero-to-100-digits-2/
See What Every Programmer Should Know About Floating-Point Arithmetic for all the deep understanding. The short answer is that all floating point representations have limitations on their precision, and that things that can be expressed in a small number of digits in decimal may not be expressible in a small number of digits in binary (and specifically not in floating point formats).
Note that while double can improve things, it is no panacea. It is quite common to have small rounding errors, even with double. You may easily get 1.99999999 when you expect 2.
Hint:
long double total = 200000.0 + 154196.8;
NSLog(#"total: %Lf", total);
On my machine prints the correct value.
A 32 bit floating point has a 23 bit mantissa, the closest value is 0.5+0.25+0.125.
You should use more bits to get the correct representation.
What is the best method for comparing IEEE floats and doubles for equality? I have heard of several methods, but I wanted to see what the community thought.
The best approach I think is to compare ULPs.
bool is_nan(float f)
{
return (*reinterpret_cast<unsigned __int32*>(&f) & 0x7f800000) == 0x7f800000 && (*reinterpret_cast<unsigned __int32*>(&f) & 0x007fffff) != 0;
}
bool is_finite(float f)
{
return (*reinterpret_cast<unsigned __int32*>(&f) & 0x7f800000) != 0x7f800000;
}
// if this symbol is defined, NaNs are never equal to anything (as is normal in IEEE floating point)
// if this symbol is not defined, NaNs are hugely different from regular numbers, but might be equal to each other
#define UNEQUAL_NANS 1
// if this symbol is defined, infinites are never equal to finite numbers (as they're unimaginably greater)
// if this symbol is not defined, infinities are 1 ULP away from +/- FLT_MAX
#define INFINITE_INFINITIES 1
// test whether two IEEE floats are within a specified number of representable values of each other
// This depends on the fact that IEEE floats are properly ordered when treated as signed magnitude integers
bool equal_float(float lhs, float rhs, unsigned __int32 max_ulp_difference)
{
#ifdef UNEQUAL_NANS
if(is_nan(lhs) || is_nan(rhs))
{
return false;
}
#endif
#ifdef INFINITE_INFINITIES
if((is_finite(lhs) && !is_finite(rhs)) || (!is_finite(lhs) && is_finite(rhs)))
{
return false;
}
#endif
signed __int32 left(*reinterpret_cast<signed __int32*>(&lhs));
// transform signed magnitude ints into 2s complement signed ints
if(left < 0)
{
left = 0x80000000 - left;
}
signed __int32 right(*reinterpret_cast<signed __int32*>(&rhs));
// transform signed magnitude ints into 2s complement signed ints
if(right < 0)
{
right = 0x80000000 - right;
}
if(static_cast<unsigned __int32>(std::abs(left - right)) <= max_ulp_difference)
{
return true;
}
return false;
}
A similar technique can be used for doubles. The trick is to convert the floats so that they're ordered (as if integers) and then just see how different they are.
I have no idea why this damn thing is screwing up my underscores. Edit: Oh, perhaps that is just an artefact of the preview. That's OK then.
The current version I am using is this
bool is_equals(float A, float B,
float maxRelativeError, float maxAbsoluteError)
{
if (fabs(A - B) < maxAbsoluteError)
return true;
float relativeError;
if (fabs(B) > fabs(A))
relativeError = fabs((A - B) / B);
else
relativeError = fabs((A - B) / A);
if (relativeError <= maxRelativeError)
return true;
return false;
}
This seems to take care of most problems by combining relative and absolute error tolerance. Is the ULP approach better? If so, why?
#DrPizza: I am no performance guru but I would expect fixed point operations to be quicker than floating point operations (in most cases).
It rather depends on what you are doing with them. A fixed-point type with the same range as an IEEE float would be many many times slower (and many times larger).
Things suitable for floats:
3D graphics, physics/engineering, simulation, climate simulation....
In numerical software you often want to test whether two floating point numbers are exactly equal. LAPACK is full of examples for such cases. Sure, the most common case is where you want to test whether a floating point number equals "Zero", "One", "Two", "Half". If anyone is interested I can pick some algorithms and go more into detail.
Also in BLAS you often want to check whether a floating point number is exactly Zero or One. For example, the routine dgemv can compute operations of the form
y = beta*y + alpha*A*x
y = beta*y + alpha*A^T*x
y = beta*y + alpha*A^H*x
So if beta equals One you have an "plus assignment" and for beta equals Zero a "simple assignment". So you certainly can cut the computational cost if you give these (common) cases a special treatment.
Sure, you could design the BLAS routines in such a way that you can avoid exact comparisons (e.g. using some flags). However, the LAPACK is full of examples where it is not possible.
P.S.:
There are certainly many cases where you don't want check for "is exactly equal". For many people this even might be the only case they ever have to deal with. All I want to point out is that there are other cases too.
Although LAPACK is written in Fortran the logic is the same if you are using other programming languages for numerical software.
Oh dear lord please don't interpret the float bits as ints unless you're running on a P6 or earlier.
Even if it causes it to copy from vector registers to integer registers via memory, and even if it stalls the pipeline, it's the best way to do it that I've come across, insofar as it provides the most robust comparisons even in the face of floating point errors.
i.e. it is a price worth paying.
This seems to take care of most problems by combining relative and absolute error tolerance. Is the ULP approach better? If so, why?
ULPs are a direct measure of the "distance" between two floating point numbers. This means that they don't require you to conjure up the relative and absolute error values, nor do you have to make sure to get those values "about right". With ULPs, you can express directly how close you want the numbers to be, and the same threshold works just as well for small values as for large ones.
If you have floating point errors you have even more problems than this. Although I guess that is up to personal perspective.
Even if we do the numeric analysis to minimize accumulation of error, we can't eliminate it and we can be left with results that ought to be identical (if we were calculating with reals) but differ (because we cannot calculate with reals).
If you are looking for two floats to be equal, then they should be identically equal in my opinion. If you are facing a floating point rounding problem, perhaps a fixed point representation would suit your problem better.
If you are looking for two floats to be equal, then they should be identically equal in my opinion. If you are facing a floating point rounding problem, perhaps a fixed point representation would suit your problem better.
Perhaps we cannot afford the loss of range or performance that such an approach would inflict.
#DrPizza: I am no performance guru but I would expect fixed point operations to be quicker than floating point operations (in most cases).
#Craig H: Sure. I'm totally okay with it printing that. If a or b store money then they should be represented in fixed point. I'm struggling to think of a real world example where such logic ought to be allied to floats. Things suitable for floats:
weights
ranks
distances
real world values (like from a ADC)
For all these things, either you much then numbers and simply present the results to the user for human interpretation, or you make a comparative statement (even if such a statement is, "this thing is within 0.001 of this other thing"). A comparative statement like mine is only useful in the context of the algorithm: the "within 0.001" part depends on what physical question you're asking. That my 0.02. Or should I say 2/100ths?
It rather depends on what you are
doing with them. A fixed-point type
with the same range as an IEEE float
would be many many times slower (and
many times larger).
Okay, but if I want a infinitesimally small bit-resolution then it's back to my original point: == and != have no meaning in the context of such a problem.
An int lets me express ~10^9 values (regardless of the range) which seems like enough for any situation where I would care about two of them being equal. And if that's not enough, use a 64-bit OS and you've got about 10^19 distinct values.
I can express values a range of 0 to 10^200 (for example) in an int, it is just the bit-resolution that suffers (resolution would be greater than 1, but, again, no application has that sort of range as well as that sort of resolution).
To summarize, I think in all cases one either is representing a continuum of values, in which case != and == are irrelevant, or one is representing a fixed set of values, which can be mapped to an int (or a another fixed-precision type).
An int lets me express ~10^9 values
(regardless of the range) which seems
like enough for any situation where I
would care about two of them being
equal. And if that's not enough, use a
64-bit OS and you've got about 10^19
distinct values.
I have actually hit that limit... I was trying to juggle times in ps and time in clock cycles in a simulation where you easily hit 10^10 cycles. No matter what I did I very quickly overflowed the puny range of 64-bit integers... 10^19 is not as much as you think it is, gimme 128 bits computing now!
Floats allowed me to get a solution to the mathematical issues, as the values overflowed with lots zeros at the low end. So you basically had a decimal point floating aronud in the number with no loss of precision (I could like with the more limited distinct number of values allowed in the mantissa of a float compared to a 64-bit int, but desperately needed th range!).
And then things converted back to integers to compare etc.
Annoying, and in the end I scrapped the entire attempt and just relied on floats and < and > to get the work done. Not perfect, but works for the use case envisioned.
If you are looking for two floats to be equal, then they should be identically equal in my opinion. If you are facing a floating point rounding problem, perhaps a fixed point representation would suit your problem better.
Perhaps I should explain the problem better. In C++, the following code:
#include <iostream>
using namespace std;
int main()
{
float a = 1.0;
float b = 0.0;
for(int i=0;i<10;++i)
{
b+=0.1;
}
if(a != b)
{
cout << "Something is wrong" << endl;
}
return 1;
}
prints the phrase "Something is wrong". Are you saying that it should?
Oh dear lord please don't interpret the float bits as ints unless you're running on a P6 or earlier.
it's the best way to do it that I've come across, insofar as it provides the most robust comparisons even in the face of floating point errors.
If you have floating point errors you have even more problems than this. Although I guess that is up to personal perspective.