Comparing IEEE floats and doubles for equality - variables

What is the best method for comparing IEEE floats and doubles for equality? I have heard of several methods, but I wanted to see what the community thought.

The best approach I think is to compare ULPs.
bool is_nan(float f)
{
return (*reinterpret_cast<unsigned __int32*>(&f) & 0x7f800000) == 0x7f800000 && (*reinterpret_cast<unsigned __int32*>(&f) & 0x007fffff) != 0;
}
bool is_finite(float f)
{
return (*reinterpret_cast<unsigned __int32*>(&f) & 0x7f800000) != 0x7f800000;
}
// if this symbol is defined, NaNs are never equal to anything (as is normal in IEEE floating point)
// if this symbol is not defined, NaNs are hugely different from regular numbers, but might be equal to each other
#define UNEQUAL_NANS 1
// if this symbol is defined, infinites are never equal to finite numbers (as they're unimaginably greater)
// if this symbol is not defined, infinities are 1 ULP away from +/- FLT_MAX
#define INFINITE_INFINITIES 1
// test whether two IEEE floats are within a specified number of representable values of each other
// This depends on the fact that IEEE floats are properly ordered when treated as signed magnitude integers
bool equal_float(float lhs, float rhs, unsigned __int32 max_ulp_difference)
{
#ifdef UNEQUAL_NANS
if(is_nan(lhs) || is_nan(rhs))
{
return false;
}
#endif
#ifdef INFINITE_INFINITIES
if((is_finite(lhs) && !is_finite(rhs)) || (!is_finite(lhs) && is_finite(rhs)))
{
return false;
}
#endif
signed __int32 left(*reinterpret_cast<signed __int32*>(&lhs));
// transform signed magnitude ints into 2s complement signed ints
if(left < 0)
{
left = 0x80000000 - left;
}
signed __int32 right(*reinterpret_cast<signed __int32*>(&rhs));
// transform signed magnitude ints into 2s complement signed ints
if(right < 0)
{
right = 0x80000000 - right;
}
if(static_cast<unsigned __int32>(std::abs(left - right)) <= max_ulp_difference)
{
return true;
}
return false;
}
A similar technique can be used for doubles. The trick is to convert the floats so that they're ordered (as if integers) and then just see how different they are.
I have no idea why this damn thing is screwing up my underscores. Edit: Oh, perhaps that is just an artefact of the preview. That's OK then.

The current version I am using is this
bool is_equals(float A, float B,
float maxRelativeError, float maxAbsoluteError)
{
if (fabs(A - B) < maxAbsoluteError)
return true;
float relativeError;
if (fabs(B) > fabs(A))
relativeError = fabs((A - B) / B);
else
relativeError = fabs((A - B) / A);
if (relativeError <= maxRelativeError)
return true;
return false;
}
This seems to take care of most problems by combining relative and absolute error tolerance. Is the ULP approach better? If so, why?

#DrPizza: I am no performance guru but I would expect fixed point operations to be quicker than floating point operations (in most cases).
It rather depends on what you are doing with them. A fixed-point type with the same range as an IEEE float would be many many times slower (and many times larger).
Things suitable for floats:
3D graphics, physics/engineering, simulation, climate simulation....

In numerical software you often want to test whether two floating point numbers are exactly equal. LAPACK is full of examples for such cases. Sure, the most common case is where you want to test whether a floating point number equals "Zero", "One", "Two", "Half". If anyone is interested I can pick some algorithms and go more into detail.
Also in BLAS you often want to check whether a floating point number is exactly Zero or One. For example, the routine dgemv can compute operations of the form
y = beta*y + alpha*A*x
y = beta*y + alpha*A^T*x
y = beta*y + alpha*A^H*x
So if beta equals One you have an "plus assignment" and for beta equals Zero a "simple assignment". So you certainly can cut the computational cost if you give these (common) cases a special treatment.
Sure, you could design the BLAS routines in such a way that you can avoid exact comparisons (e.g. using some flags). However, the LAPACK is full of examples where it is not possible.
P.S.:
There are certainly many cases where you don't want check for "is exactly equal". For many people this even might be the only case they ever have to deal with. All I want to point out is that there are other cases too.
Although LAPACK is written in Fortran the logic is the same if you are using other programming languages for numerical software.

Oh dear lord please don't interpret the float bits as ints unless you're running on a P6 or earlier.
Even if it causes it to copy from vector registers to integer registers via memory, and even if it stalls the pipeline, it's the best way to do it that I've come across, insofar as it provides the most robust comparisons even in the face of floating point errors.
i.e. it is a price worth paying.

This seems to take care of most problems by combining relative and absolute error tolerance. Is the ULP approach better? If so, why?
ULPs are a direct measure of the "distance" between two floating point numbers. This means that they don't require you to conjure up the relative and absolute error values, nor do you have to make sure to get those values "about right". With ULPs, you can express directly how close you want the numbers to be, and the same threshold works just as well for small values as for large ones.

If you have floating point errors you have even more problems than this. Although I guess that is up to personal perspective.
Even if we do the numeric analysis to minimize accumulation of error, we can't eliminate it and we can be left with results that ought to be identical (if we were calculating with reals) but differ (because we cannot calculate with reals).

If you are looking for two floats to be equal, then they should be identically equal in my opinion. If you are facing a floating point rounding problem, perhaps a fixed point representation would suit your problem better.

If you are looking for two floats to be equal, then they should be identically equal in my opinion. If you are facing a floating point rounding problem, perhaps a fixed point representation would suit your problem better.
Perhaps we cannot afford the loss of range or performance that such an approach would inflict.

#DrPizza: I am no performance guru but I would expect fixed point operations to be quicker than floating point operations (in most cases).
#Craig H: Sure. I'm totally okay with it printing that. If a or b store money then they should be represented in fixed point. I'm struggling to think of a real world example where such logic ought to be allied to floats. Things suitable for floats:
weights
ranks
distances
real world values (like from a ADC)
For all these things, either you much then numbers and simply present the results to the user for human interpretation, or you make a comparative statement (even if such a statement is, "this thing is within 0.001 of this other thing"). A comparative statement like mine is only useful in the context of the algorithm: the "within 0.001" part depends on what physical question you're asking. That my 0.02. Or should I say 2/100ths?

It rather depends on what you are
doing with them. A fixed-point type
with the same range as an IEEE float
would be many many times slower (and
many times larger).
Okay, but if I want a infinitesimally small bit-resolution then it's back to my original point: == and != have no meaning in the context of such a problem.
An int lets me express ~10^9 values (regardless of the range) which seems like enough for any situation where I would care about two of them being equal. And if that's not enough, use a 64-bit OS and you've got about 10^19 distinct values.
I can express values a range of 0 to 10^200 (for example) in an int, it is just the bit-resolution that suffers (resolution would be greater than 1, but, again, no application has that sort of range as well as that sort of resolution).
To summarize, I think in all cases one either is representing a continuum of values, in which case != and == are irrelevant, or one is representing a fixed set of values, which can be mapped to an int (or a another fixed-precision type).

An int lets me express ~10^9 values
(regardless of the range) which seems
like enough for any situation where I
would care about two of them being
equal. And if that's not enough, use a
64-bit OS and you've got about 10^19
distinct values.
I have actually hit that limit... I was trying to juggle times in ps and time in clock cycles in a simulation where you easily hit 10^10 cycles. No matter what I did I very quickly overflowed the puny range of 64-bit integers... 10^19 is not as much as you think it is, gimme 128 bits computing now!
Floats allowed me to get a solution to the mathematical issues, as the values overflowed with lots zeros at the low end. So you basically had a decimal point floating aronud in the number with no loss of precision (I could like with the more limited distinct number of values allowed in the mantissa of a float compared to a 64-bit int, but desperately needed th range!).
And then things converted back to integers to compare etc.
Annoying, and in the end I scrapped the entire attempt and just relied on floats and < and > to get the work done. Not perfect, but works for the use case envisioned.

If you are looking for two floats to be equal, then they should be identically equal in my opinion. If you are facing a floating point rounding problem, perhaps a fixed point representation would suit your problem better.
Perhaps I should explain the problem better. In C++, the following code:
#include <iostream>
using namespace std;
int main()
{
float a = 1.0;
float b = 0.0;
for(int i=0;i<10;++i)
{
b+=0.1;
}
if(a != b)
{
cout << "Something is wrong" << endl;
}
return 1;
}
prints the phrase "Something is wrong". Are you saying that it should?

Oh dear lord please don't interpret the float bits as ints unless you're running on a P6 or earlier.

it's the best way to do it that I've come across, insofar as it provides the most robust comparisons even in the face of floating point errors.
If you have floating point errors you have even more problems than this. Although I guess that is up to personal perspective.

Related

How does VB.NET 2008 round off integer numbers? [duplicate]

According to the documentation, the decimal.Round method uses a round-to-even algorithm which is not common for most applications. So I always end up writing a custom function to do the more natural round-half-up algorithm:
public static decimal RoundHalfUp(this decimal d, int decimals)
{
if (decimals < 0)
{
throw new ArgumentException("The decimals must be non-negative",
"decimals");
}
decimal multiplier = (decimal)Math.Pow(10, decimals);
decimal number = d * multiplier;
if (decimal.Truncate(number) < number)
{
number += 0.5m;
}
return decimal.Round(number) / multiplier;
}
Does anybody know the reason behind this framework design decision?
Is there any built-in implementation of the round-half-up algorithm into the framework? Or maybe some unmanaged Windows API?
It could be misleading for beginners that simply write decimal.Round(2.5m, 0) expecting 3 as a result but getting 2 instead.
The other answers with reasons why the Banker's algorithm (aka round half to even) is a good choice are quite correct. It does not suffer from negative or positive bias as much as the round half away from zero method over most reasonable distributions.
But the question was why .NET use Banker's actual rounding as default - and the answer is that Microsoft has followed the IEEE 754 standard. This is also mentioned in MSDN for Math.Round under Remarks.
Also note that .NET supports the alternative method specified by IEEE by providing the MidpointRounding enumeration. They could of course have provided more alternatives to solving ties, but they choose to just fulfill the IEEE standard.
Probably because it's a better algorithm. Over the course of many roundings performed, you will average out that all .5's end up rounding equally up and down. This gives better estimations of actual results if you are for instance, adding a bunch of rounded numbers. I would say that even though it isn't what some may expect, it's probably the more correct thing to do.
While I cannot answer the question of "Why did Microsoft's designers choose this as the default?", I just want to point out that an extra function is unnecessary.
Math.Round allows you to specify a MidpointRounding:
ToEven - When a number is halfway between two others, it is rounded toward the nearest even number.
AwayFromZero - When a number is halfway between two others, it is rounded toward the nearest number that is away from zero.
Decimals are mostly used for money; banker’s rounding is common when working with money. Or you could say.
It is mostly bankers that need the
decimal type; therefore it does
“banker’s rounding”
Bankers rounding have the advantage that on average you will get the same result if you:
round a set of “invoice lines” before adding them up,
or add them up then round the total
Rounding before adding up saved a lot of work in the days before computers.
(In the UK when we went decimal banks would not deal with half pence, but for many years there was still a half pence coin and shop often had prices ending in half pence – so lots of rounding)
Use another overload of Round function like this:
decimal.Round(2.5m, 0,MidpointRounding.AwayFromZero)
It will output 3. And if you use
decimal.Round(2.5m, 0,MidpointRounding.ToEven)
you will get banker's rounding.

How to write negative number in obj C?

I´m trying to write a negative number like this:
} else if ([newsCondition.temperature floatValue] == -7.0f) {
but that won´t trigger it and the negative symbol is black whilst the number is blue. How can I write the number so that it triggers when temperature isEqual to -7.0 degrees?
The way you've written your negative number (-7.0f) is correct.
As for your code not triggering: the floating point representation of numbers is not perfect, and you have to be aware of these issues when comparing floating point numbers to each other.
If you're wanting to compare two floating point numbers, you can use an 'epsilon' (i.e. acceptable error) for the comparison. This is basically checking if the numbers are close enough.
Simple naive example:
#define EPSILON 0.00001f
float x = 0.09f;
float y = 0.0901f;
if (abs(y - x) < EPSILON) {
// close enough to be considered equal;
// do something here
}
For more discussion, see http://floating-point-gui.de/errors/comparison/
Floating-point arithmetic is considered an esoteric subject by many
people. This is rather surprising because floating-point is ubiquitous
in computer systems. Almost every language has a floating-point
datatype; computers from PCs to supercomputers have floating-point
accelerators; most compilers will be called upon to compile
floating-point algorithms from time to time; and virtually every
operating system must respond to floating-point exceptions such as
overflow. This paper presents a tutorial on those aspects of
floating-point that have a direct impact on designers of computer
systems. It begins with background on floating-point representation
and rounding error, continues with a discussion of the IEEE
floating-point standard, and concludes with numerous examples of how
computer builders can better support floating-point.
From What Every Computer Scientist Should Know About Floating-Point Arithmetic

ARM NEON assembly and floating point rounding

I'm working on code optimization for ARM processors using NEON. However I have a problem: my algorithm contains the following floating point computation:
round(x*b - y*a)
Where results can be both positive and negative.
Actually I'm using 2 VMUL and 1 VSUB to make parallel computation (4 values per operation using Q registers and 32bit floats).
There is a way I can handle this problem? If the results were all the same sign I know I can simply add or subtract 0.5
First, NEON suffers from long latency especially after float multiplications.
You won't gain very much with two vmuls and one vsub due to this compared to vfp programming.
Therefore, your code should look like :
vmul.f32 result, x, b
vmls.f32 result, y, a
Those multiply-accumulate/substract instructions are issued back-to-back with the previous multiply instruction without any latency. (9 cycles saved in this case)
Unfortunately however, I don't understand your actual question. Why would someone want to round float values? Apparently you intend to extract the integer part rounded, and there are several ways to do this, and I cannot tell you anything more cause your question is as always too vague.
I've been following your questions in this forum for quite some time, and I simply cannot get rid of the feeling that you're lacking something very fundamental.
I suggest you to read the assembly reference guide pdf from ARM first.
I have no knowledge in assembly, but using the NEON intrinsics in C (I mention their assembly equivalents to help you browse the documentation, even though I would not be able to use them myself), the algorithm for a round function could be:
// Prepare 3 vectors filled with all 0.5, all -0.5, and all 0
// Corresponding assembly instruction is VDUP
float32x4_t plus = vdupq_n_f32(0.5);
float32x4_t minus = vdupq_n_f32(-0.5);
float32x4_t zero = vdupq_n_f32(0);
// Assuming the result of x*a-y*b is stored in the following vector:
float32x4_t xa_yb;
// Compare vector with 0
// Corresponding assembly instruction is VCGT
uint32x4_t more_than_zero = vcgtq_f32(xa_yb, zero);
// Resulting vector will be set to all 1-bits for values where the comparison
// is true, all 0-bits otherwise.
// Use bit select to choose if you have to add or substract 0.5
// Corresponding assembly instruction is VBSL, its syntax is quite alike
// `more_than_zero ? plus : minus`.
float32x4_t to_add = vbslq_f32(more_than_zero, plus, minus);
// Add this vector to the vector to round
// Corresponding assembly instruction is VADD,
// but I guess you knew this one :D
float32x4_t rounded = vaddq_f32(xa_yb, to_add);
// Then cast to integers!
I guess you'll be able to convert this to assembly (I'm not, anyway)
Note that I have no idea if this is really more efficient than standard code, non-SIMD code!

How to 'checksum' an array of noisy floating point numbers?

What is a quick and easy way to 'checksum' an array of floating point numbers, while allowing for a specified small amount of inaccuracy?
e.g. I have two algorithms which should (in theory, with infinite precision) output the same array. But they work differently, and so floating point errors will accumulate differently, though the array lengths should be exactly the same. I'd like a quick and easy way to test if the arrays seem to be the same. I could of course compare the numbers pairwise, and report the maximum error; but one algorithm is in C++ and the other is in Mathematica and I don't want the bother of writing out the numbers to a file or pasting them from one system to another. That's why I want a simple checksum.
I could simply add up all the numbers in the array. If the array length is N, and I can tolerate an error of 0.0001 in each number, then I would check if abs(sum1-sum2)<0.0001*N. But this simplistic 'checksum' is not robust, e.g. to an error of +10 in one entry and -10 in another. (And anyway, probability theory says that the error probably grows like sqrt(N), not like N.) Of course, any checksum is a low-dimensional summary of a chunk of data so it will miss some errors, if not most... but simple checksums are nonetheless useful for finding non-malicious bug-type errors.
Or I could create a two-dimensional checksum, [sum(x[n]), sum(abs(x[n]))]. But is the best I can do, i.e. is there a different function I might use that would be "more orthogonal" to the sum(x[n])? And if I used some arbitrary functions, e.g. [sum(f1(x[n])), sum(f2(x[n]))], then how should my 'raw error tolerance' translate into 'checksum error tolerance'?
I'm programming in C++, but I'm happy to see answers in any language.
i have a feeling that what you want may be possible via something like gray codes. if you could translate your values into gray codes and use some kind of checksum that was able to correct n bits you could detect whether or not the two arrays were the same except for n-1 bits of error, right? (each bit of error means a number is "off by one", where the mapping would be such that this was a variation in the least significant digit).
but the exact details are beyond me - particularly for floating point values.
i don't know if it helps, but what gray codes solve is the problem of pathological rounding. rounding sounds like it will solve the problem - a naive solution might round and then checksum. but simple rounding always has pathological cases - for example, if we use floor, then 0.9999999 and 1 are distinct. a gray code approach seems to address that, since neighbouring values are always single bit away, so a bit-based checksum will accurately reflect "distance".
[update:] more exactly, what you want is a checksum that gives an estimate of the hamming distance between your gray-encoded sequences (and the gray encoded part is easy if you just care about 0.0001 since you can multiple everything by 10000 and use integers).
and it seems like such checksums do exist: Any error-correcting code can be used for error detection. A code with minimum Hamming distance, d, can detect up to d − 1 errors in a code word. Using minimum-distance-based error-correcting codes for error detection can be suitable if a strict limit on the minimum number of errors to be detected is desired.
so, just in case it's not clear:
multiple by minimum error to get integers
convert to gray code equivalent
use an error detecting code with a minimum hamming distance larger than the error you can tolerate.
but i am still not sure that's right. you still get the pathological rounding in the conversion from float to integer. so it seems like you need a minimum hamming distance that is 1 + len(data) (worst case, with a rounding error on each value). is that feasible? probably not for large arrays.
maybe ask again with better tags/description now that a general direction is possible? or just add tags now? we need someone who does this for a living. [i added a couple of tags]
I've spent a while looking for a deterministic answer, and been unable to find one. If there is a good answer, it's likely to require heavy-duty mathematical skills (functional analysis).
I'm pretty sure there is no solution based on "discretize in some cunning way, then apply a discrete checksum", e.g. "discretize into strings of 0/1/?, where ? means wildcard". Any discretization will have the property that two floating-point numbers very close to each other can end up with different discrete codes, and then the discrete checksum won't tell us what we want to know.
However, a very simple randomized scheme should work fine. Generate a pseudorandom string S from the alphabet {+1,-1}, and compute csx=sum(X_i*S_i) and csy=sum(Y_i*S_i), where X and Y are my original arrays of floating point numbers. If we model the errors as independent Normal random variables with mean 0, then it's easy to compute the distribution of csx-csy. We could do this for several strings S, and then do a hypothesis test that the mean error is 0. The number of strings S needed for the test is fixed, it doesn't grow linearly in the size of the arrays, so it satisfies my need for a "low-dimensional summary". This method also gives an estimate of the standard deviation of the error, which may be handy.
Try this:
#include <complex>
#include <cmath>
#include <iostream>
// PARAMETERS
const size_t no_freqs = 3;
const double freqs[no_freqs] = {0.05, 0.16, 0.39}; // (for example)
int main() {
std::complex<double> spectral_amplitude[no_freqs];
for (size_t i = 0; i < no_freqs; ++i) spectral_amplitude[i] = 0.0;
size_t n_data = 0;
{
std::complex<double> datum;
while (std::cin >> datum) {
for (size_t i = 0; i < no_freqs; ++i) {
spectral_amplitude[i] += datum * std::exp(
std::complex<double>(0.0, 1.0) * freqs[i] * double(n_data)
);
}
++n_data;
}
}
std::cout << "Fuzzy checksum:\n";
for (size_t i = 0; i < no_freqs; ++i) {
std::cout << real(spectral_amplitude[i]) << "\n";
std::cout << imag(spectral_amplitude[i]) << "\n";
}
std::cout << "\n";
return 0;
}
It returns just a few, arbitrary points of a Fourier transform of the entire data set. These make a fuzzy checksum, so to speak.
How about computing a standard integer checksum on the data obtained by zeroing the least significant digits of the data, the ones that you don't care about?

Is there a practical limit to the size of bit masks?

There's a common way to store multiple values in one variable, by using a bitmask. For example, if a user has read, write and execute privileges on an item, that can be converted to a single number by saying read = 4 (2^2), write = 2 (2^1), execute = 1 (2^0) and then add them together to get 7.
I use this technique in several web applications, where I'd usually store the variable into a field and give it a type of MEDIUMINT or whatever, depending on the number of different values.
What I'm interested in, is whether or not there is a practical limit to the number of values you can store like this? For example, if the number was over 64, you couldn't use (64 bit) integers any more. If this was the case, what would you use? How would it affect your program logic (ie: could you still use bitwise comparisons)?
I know that once you start getting really large sets of values, a different method would be the optimal solution, but I'm interested in the boundaries of this method.
Off the top of my head, I'd write a set_bit and get_bit function that could take an array of bytes and a bit offset in the array, and use some bit-twiddling to set/get the appropriate bit in the array. Something like this (in C, but hopefully you get the idea):
// sets the n-th bit in |bytes|. num_bytes is the number of bytes in the array
// result is 0 on success, non-zero on failure (offset out-of-bounds)
int set_bit(char* bytes, unsigned long num_bytes, unsigned long offset)
{
// make sure offset is valid
if(offset < 0 || offset > (num_bytes<<3)-1) { return -1; }
//set the right bit
bytes[offset >> 3] |= (1 << (offset & 0x7));
return 0; //success
}
//gets the n-th bit in |bytes|. num_bytes is the number of bytes in the array
// returns (-1) on error, 0 if bit is "off", positive number if "on"
int get_bit(char* bytes, unsigned long num_bytes, unsigned long offset)
{
// make sure offset is valid
if(offset < 0 || offset > (num_bytes<<3)-1) { return -1; }
//get the right bit
return (bytes[offset >> 3] & (1 << (offset & 0x7));
}
I've used bit masks in filesystem code where the bit mask is many times bigger than a machine word. think of it like an "array of booleans";
(journalling masks in flash memory if you want to know)
many compilers know how to do this for you. Adda bit of OO code to have types that operate senibly and then your code starts looking like it's intent, not some bit-banging.
My 2 cents.
With a 64-bit integer, you can store values up to 2^64-1, 64 is only 2^6. So yes, there is a limit, but if you need more than 64-its worth of flags, I'd be very interested to know what they were all doing :)
How many states so you need to potentially think about? If you have 64 potential states, the number of combinations they can exist in is the full size of a 64-bit integer.
If you need to worry about 128 flags, then a pair of bit vectors would suffice (2^64 * 2).
Addition: in Programming Pearls, there is an extended discussion of using a bit array of length 10^7, implemented in integers (for holding used 800 numbers) - it's very fast, and very appropriate for the task described in that chapter.
Some languages ( I believe perl does, not sure ) permit bitwise arithmetic on strings. Giving you a much greater effective range. ( (strlen * 8bit chars ) combinations )
However, I wouldn't use a single value for superimposition of more than one /type/ of data. The basic r/w/x triplet of 3-bit ints would probably be the upper "practical" limit, not for space efficiency reasons, but for practical development reasons.
( Php uses this system to control its error-messages, and I have already found that its a bit over-the-top when you have to define values where php's constants are not resident and you have to generate the integer by hand, and to be honest, if chmod didn't support the 'ugo+rwx' style syntax I'd never want to use it because i can never remember the magic numbers )
The instant you have to crack open a constants table to debug code you know you've gone too far.
Old thread, but it's worth mentioning that there are cases requiring bloated bit masks, e.g., molecular fingerprints, which are often generated as 1024-bit arrays which we have packed in 32 bigint fields (SQL Server not supporting UInt32). Bit wise operations work fine - until your table starts to grow and you realize the sluggishness of separate function calls. The binary data type would work, were it not for T-SQL's ban on bitwise operators having two binary operands.
For example .NET uses array of integers as an internal storage for their BitArray class.
Practically there's no other way around.
That being said, in SQL you will need more than one column (or use the BLOBS) to store all the states.
You tagged this question SQL, so I think you need to consult with the documentation for your database to find the size of an integer. Then subtract one bit for the sign, just to be safe.
Edit: Your comment says you're using MySQL. The documentation for MySQL 5.0 Numeric Types states that the maximum size of a NUMERIC is 64 or 65 digits. That's 212 bits for 64 digits.
Remember that your language of choice has to be able to work with those digits, so you may be limited to a 64-bit integer anyway.