Design - Interaction of multiple coupled subclasses - oop

Starting simple, I have two objects -- a Player and a Game:
Game, Player
The Player sends its moves to the Game which processes them and updates the state of the Player (along with all other Players in the Game):
Player.do_move_X:
game.handle_move_X()
Game.handle_move_X:
player.take_damage(10)
Next, I add multiple Game types (subclasses of Game):
GameNormal, GameCaptureTheFlag, GamePractice
It's easy to change the behavior between different Game classes by simply re-implementing relevant methods in the subclass:
GamePractice.handle_move_X:
player.take_damage(5)
Next, I add multiple Player subclasses:
PlayerNormal, PlayerUnregistered, PlayerElite
Now it's getting tricky because the interaction between a Player and Game depends both on the Player's type AND on the Game's type. Now I end up with code looking like this:
GamePractice.handle_move_X:
if player is a PlayerNormal:
player.take_damage(5)
else if player is a PlayerUnregistered:
player.take_damage(5)
else if player is a PlayerElite:
player.take_damage(10)
(Analogously, I could place that sort of logic in the Player classes instead of the Game classes.)
Checking the type of the objects in a big switch or if-else statement is ugly. One option I have is to add explicit methods to the Player class to handle a particular case for each Game type:
GameNormal.handle_move_X:
player.take_normal_damage()
PlayerNormal.take_normal_damage:
take_damage(10)
PlayerElite.take_normal_damage:
take_damage(15)
GamePractice.handle_move_X:
player.take_practice_damage()
PlayerNormal.take_practice_damage:
take_damage(5)
PlayerElite.take_practice_damage:
take_damage(10)
This eliminates the ugliness from above but adds a new ugliness -- it bloats the Player classes with public methods to handle each case for each Game type.
Is there any better paradigm or design for dealing with this sort of case?

I don't know if it's the best possible approach, but I think that the visitor pattern could help here. The implementation depends on the language, but basically you have a Visitor interface with a visit method for Player and every subclass of it. Then, for every class in the Player tree, you would an accept method, or maybe just for the subclasses, if Player is interface/abstract:
PlayerNormal.accept(Visitor v):
v.visit(this)
PlayerUnregistered.accept(Visitor v):
v.visit(this)
PlayerElite.accept(Visitor v):
v.visit(this)
Finally, you would need an implementation of Visitor for Game and every subclass of it - again, maybe just for the subclasses. This could be a private class:
GameNormal.TakeDamageVisitor.visit(PlayerNormal p):
p.take_damage(10)
GameNormal.TakeDamageVisitor.visit(PlayerUnregistered p):
p.take_damage(10)
GameNormal.TakeDamageVisitor.visit(PlayerElite p):
p.take_damage(15)
GameCaptureTheFlag.TakeDamageVisitor.visit(PlayerNormal p):
p.take_damage(10)
GameCaptureTheFlag.TakeDamageVisitor.visit(PlayerUnregistered p):
p.take_damage(15)
GameCaptureTheFlag.TakeDamageVisitor.visit(PlayerElite p):
p.take_damage(15)
GamePractice.TakeDamageVisitor.visit(PlayerNormal p):
p.take_damage(5)
GamePractice.TakeDamageVisitor.visit(PlayerUnregistered p):
p.take_damage(5)
GamePractice.TakeDamageVisitor.visit(PlayerElite p):
p.take_damage(10)
Finally, you could have each Game subclass return an instance of its own kind of Visitor in a get_take_damage_visitor method, and, if you store a reference to the game in each player, you can do:
Player.do_move_X:
accept(game.get_take_damage_visitor)
Pros:
You don't need switchs or if-elseif constructs, and there are no downcasts.
In compiled languages, you get a compilation error if you forget to add some case.
You can define other visitors for similar problems.
Cons:
The logic may be somewhat confusing at first, although it is a well-established design pattern.
It may be a hassle to maintain if you have many subtypes of Player and/or Game - although this may hold for any possible alternative, and at least here the compiler helps you.
Lastly, depending on the language, you can implement a similar idea more easily if you have multiple dispatch (actually, the visitor pattern is kind of a trick to implement something like multiple dispatch in languages without it), or in C++ with a templated function.

Related

how to model my game project in functional programming concept with OCAML?

I'm currently in a project of making a video game, to be specific, a turn-based strategy in OCAML. It's a coursework about functional programming, so the more functional programming the better, but if I can't do it with functional programming, I can use OOP if REALLY needed.
Here's the model of my game at the basic level :
In the following, when I say type, I actually mean instance/type/module, i.e. I don't know how I should implement it, but I know that they should be at least packaged into different sections.
There will be a Main type. It's role is to switch between menus, settings, and the actual game.
The Game type will run the game. In context, it will iterate over each Faction of the game, and iterate, within the Faction, each Unit that the faction has. Each Unit will have a specific behaviour attached to it.
Every game object ( that can be rendered in a 2D screen ) will have the GameObject type. Ideally, I can attach a bunch of video/audio/etc. renderer and I will be able to know their position on the map.
Grid will be an array of array composed of Tile. Grid has a global view over the game, from Grid, I can, for example, know the location of every GameObject in the Game
Tile is a tile on the grid. Eventually, I would like them to have special features, for example, a terrain type.
Unit ( not to be confused with unit type from OCAML ) is an entity controlled by a Faction. It has many attributes, such as health, mana, strength etc... and can do certain actions depending on who they are.
Faction represents either the player or one of the opponents. Some bonus apply depending on the faction. e.g. a faction could have greater health, but lower strength and vice-versa.
Action is a type that represents an action. It has a source and a destination attributes. It can represent, any type of action, from self healing to an AOE spell. It has access to Game so that it can be free to do whatever it pleases within the Game.
My goal is to make a game model that I can improve on progressively. For instance, I would like to make subclasses of unit, those who can attack from afar, and those who can only attack in melee etc.
If this was a OOP project, it would be pretty straightforward, albeit inefficient if I understood the previous comments. As you can see, my way of thinking is biased towards OOP because I haven't done any project of this scale without OOP. My goal here is to make it in Functional Programming.
I require your advice on how to implement what I described, or part of it so I can figure out the rest on my own.
Thank you.
EDIT: Edited the whole question
EDIT2: Some spelling and backticks
Your question is filled with imperative and OOP idioms: iterate, array, object, subclasses, ... So your mind set seems to be already made up.
Not surprising as GUIs and games are the most obvious examples for OOP. They have state and mutate over time and thrive on inheritance. And while you can do all those things functionally, with functors or with with first class modules I don't think it is worth it.
Luckily ocaml lends itself well to this. Records and classes can have mutable fields and ocamls classes can model your objects and inheritance nicely. And you still can use all the functional concepts of ocaml alongside the classes. It mixes well.

Preventing a huge Player class for a game

So I am developing a web text-based game and whatever business requirement shows up it adds a new method to the Player class. If you have developed a game in OOP way you possible know what I am talking about.
On my daily job I am developing a game server project and again, it has a HUGE Player class. The way they made that class to not be even bigger is making something like "managers": PlayerAttributeManager, PlayerFoodManager and those are just examples. So you would not call Player.getFood, Player.getTastyFood and so on, but those would be in PlayerFoodManager for example.
A friend was making a game for android and again most if his logic was in the Player class. However a huge Player class does not break the design patterns I think, because in those games a Player can do so much things and everything is related to the player.
Please give me any advice on how to have a smaller class when creating a game.
A way to keep your Player class small(er) is to take the OOP pattern further. Let's assume that your player does, at the moment, know about food, knows how to eat, etc. Why not factor out those things and take a different point of view: Your player has, for want of a better word, a digestion - or, in OOP, an attribute of type "Digestion", which is in itself a class covering hunger, eating, etc.
A similar principle can be applied to other aspects of your player.
At the end, your player would have fields of type Digestion, Health, Armory, ..., and these aspects would be self-contained classes, keeping the player class small.
Of course, health would have some interaction with digestion presumably - this can be managed by using interfaces.

How does polymorphism make my code more flexible?

I am reading Head First Object Oriented Design to get a better understanding of OOP concepts.
Polymorphism is explained as:
Airplane plane = new Airplane();
Airplane plane = new Jet();
Airplane plane = new Rocket();
You can write code that works on the superclass, like an airplane, but will work with any of the subclasses. :- * Hmmm.. ..I got this one.*.
It further explains:
-> So how does polymorphism makes code flexible?
Well, if you need new functionality, you could write a new subclass of
AirPlane. But since your code uses the superclass, your new class will work
without any changes to the rest of your code.
Now I am not getting it. I need to create a sublass of an airplane. For example: I create a class, Randomflyer. To use it I will have to create its object. So I will use:
Airplane plane = new Randomflyer();
I am not getting it. Even I would have created an object of a subclasses directly. Still I don't see a need to change my code anywhere when I will add a new subclass. How does using a superclass save me from making extra changes to the rest of my code?
Say you have the following (simplified):
Airplane plane = new MyAirplane();
Then you do all sorts of things with it:
List<Airplane> formation = ...
// superclass is important especially if working with collections
formation.add(plane);
// ...
plane.flyStraight();
plane.crashTest();
// ... insert some other thousand lines of code that use plane
Thing is. When you suddenly decide to change your plane to
Airplane plane = new PterdodactylSuperJet();
all your other code I wrote above will just work (differently, of course) because the other code relies on the interface (read:public methods) provided by the general Airplane class, and not from the actual implementation you provide at the beginning. In this way, you can pass on different implementations without altering your other code.
If you hadn't used an Airplane superclass and just written MyAirplane and PterdodactylSuperJet in the sense that you replace
MyAriplane plane = new MyAirplane();
with
PterdodactylSuperJet plane = new PterdodactylSuperJet();
then you have a point: the rest of your code may still work. But that just happens to work, because you wrote the same interface (public methods) in both classes, on purpose. Should you (or some other dev) change the interface in one class, moving back and forth between airplane classes will render your code unusable.
Edit
By on purpose I mean that you specifically implement methods with the same signatures in both MyAirplane and PterodactylSuperJet in order for your code to run correctly with both. If you or someone else change the interface of one class, your flexibility is broken.
Example. Say you don't have the Airplane superclass and another unsuspecting dev modifies the method
public void flyStraight()
in MyAirplane to
public void flyStraight (int speed)
and assume your plane variable is of type MyAirplane. Then the big code would need some modifications; assume that's needed anyway. Thing is, if you move back to a PterodactylSuperJet (e.g. to test it, compare it, a plethora of reasons), your code won't run. Whygodwhy. Because you need to provide PterodactylSuperJet with the method flyStraight(int speed) you didn't write. You can do that, you can repair, that's alright.
That's an easy scenario. But what if
This problem bites you in the ass a year after the innocent modification? You might even forget why you did that in the first place.
Not one, but a ton of modificatios had occurred that you can't keep track of? Even if you can keep track, you need to get the new class up to speed. Almost never easy and definitely never pleasant.
Instead of two plane classes you have a hundred?
Any linear (or not) combination of the above?
If you had written an Airplane superclass and made each subclass override its relevant methods, then by changing flyStraight() to flyStraight(int) in Airplane you would be compelled to adapt all subclasses accordingly, thus keeping consistency. Flexibility will therefore not be altered.
End edit
That's why a superclass stays as some kind of "daddy" in the sense that if someone modifies its interface, all subclasses will follow, hence your code will be more flexible.
A very simple use-case to demonstrate the benefit of polymorphism is batch processing of a list of objects without really bothering about its type (i.e. delegating this responsibility to each concrete type). This helps performing abstract operations consistently on a collection of objects.
Let's say you want to implement a simulated flight program, where you would want to fly each and every type of plane that's present in your list. You simply call
for (AirPlane p : airPlanes) {
p.fly();
}
Each plane knows how to fly itself and you don't need to bother about the type of the planes while making this call. This uniformity in the behaviour of the objects is what polymorphism gives you.
Other people have more fully addressed your questions about polymorphism in general, but I want to respond to one specific piece:
I am not getting it, even I would have create an object of subclasses
directly.
This is actually a big deal, and people go to a lot of effort to avoid doing this. If you crack open something like the Gang of Four, there are a bunch of patterns dedicated to avoiding just this issue.
The main approach is called the Factory pattern. That looks something like this:
AirplaneFactory factory = new AirplaneFactory();
Airplane planeOne = factory.buildAirplane();
Airplane planeTwo = factory.buildJet();
Airplane planeThree = factory.buildRocket();
This gives you more flexibility by abstracting away the instantiation of the object. You might imagine a situation like this: your company starts off primarily building Jets, so your factory has a buildDefault() method that looks like:
public Airplane buildDefault() {
return new Jet();
}
One day, your boss comes up to you and tells you that the business has changed. What people really want these days are Rockets -- Jets are a thing of the past.
Without the AirplaneFactory, you'd have to go through your code and replace possibly dozens of calls to new Jet() with new Rocket(). With the Factory pattern, you can just make a change like:
public Airplane buildDefault() {
return new Rocket();
}
and so the scope of the change is dramatically reduced. And since you've been coding to the interface Airplane rather than the concrete type Jet or Rocket, this is the only change you need to make.
Suppose you have methods in your Controller class of Planes like
parkPlane(Airplane plane)
and
servicePlane(Airplane plane)
implemented in your program. It will not BREAK your code.
I mean, it need not to change as long as it accepts arguments as AirPlane.
Because it will accept any Airplane despite of actual type, flyer, highflyr, fighter, etc.
Also, in a collection:
List<Airplane> plane; // Will take all your planes.
The following example will clear your understanding.
interface Airplane{
parkPlane();
servicePlane();
}
Now your have a fighter plane that implements it, so
public class Fighter implements Airplane {
public void parkPlane(){
// Specific implementations for fighter plane to park
}
public void servicePlane(){
// Specific implementatoins for fighter plane to service.
}
}
The same thing for HighFlyer and other clasess:
public class HighFlyer implements Airplane {
public void parkPlane(){
// Specific implementations for HighFlyer plane to park
}
public void servicePlane(){
// specific implementatoins for HighFlyer plane to service.
}
}
Now think your controller classes using AirPlane several times,
Suppose your Controller class is AirPort like below,
public Class AirPort{
AirPlane plane;
public AirPlane getAirPlane() {
return airPlane;
}
public void setAirPlane(AirPlane airPlane) {
this.airPlane = airPlane;
}
}
here magic comes as Polymorphism makes your code more flexible because,
you may make your new AirPlane type instances as many as you want and you are not changing
code of AirPort class.
you can set AirPlane instance as you like (Thats called dependency Intection too)..
JumboJetPlane // implementing AirPlane interface.
AirBus // implementing AirPlane interface.
Now think of If you create new type of plane, or you remove any type of Plane does it make difference to your AirPort?
No, Because we can say the The AirPort class refers the AirPlane polymorphically.
As far as I understand, the advantage is that, for example, in a airplane combat game, you have to update all airplanes' positions at every loop, but you have several different airplanes. Let's say you have:
MiG-21
Waco 10
Mitsubishi Zero
Eclipse 500
Mirage
You don't want to have to update their movements and positions in separate like this:
Mig21 mig = new Mig21();
mig.move();
Waco waco = new Waco();
waco.move();
Mitsubishi mit = new Mitsubishi();
mit.move();
...
You want to have a superclass that can take any of this subclasses (Airplane) and update all in a loop:
airplaneList.append(new Mig21());
airplaneList.append(new Waco());
airplaneList.append(new Mitsubishi());
...
for(Airplane airplane : airplanesList)
airplane.move()
This makes your code a lot simpler.
You are completely correct that sub-classes are only useful to those who instantiate them. This was summed up well by Rich Hickey:
...any new class is itself an island; unusable by any existing code written by anyone, anywhere. So consider throwing the baby out with the bath water.
It is still possible to use an object which has been instantiated somewhere else. As a trivial example of this, any method which accepts an argument of type "Object" will probably be given an instance of a sub-class.
There is another problem though, which is much more subtle. In general a sub-class (like Jet) will not work in place of a parent class (like Airplane). Assuming that sub-classes are interchangable with parent classes is the cause of a huge number of bugs.
This property of interchangability is known as the Liskov Substitution Principle, and was originally formulated as:
Let q(x) be a property provable about objects x of type T. Then q(y) should be provable for objects y of type S where S is a subtype of T.
In the context of your example, T is the Airplane class, S is the Jet class, x are the Airplane instances and y are the Jet instances.
The "properties" q are the the results of the instances' methods, the contents of their properties, the results of passing them to other operators or methods, etc. We can think of "provable" as meaning "observable"; ie. it doesn't matter if two objects are implemented differently, if there is no difference in their results. Likewise it doesn't matter if two objects will behave differently after an infinite loop, since that code can never be reached.
Defining Jet as a sub-class of Airplane is a trivial matter of syntax: Jet's declaration must contain the extends Airplane tokens and there mustn't be a final token in the declaration of Airplane. It is trivial for the compiler to check that objects obey the rules of sub-classing. However, this doesn't tell us whether Jet is a sub-type of Airplane; ie. whether a Jet can be used in place of an Airplane. Java will allow it, but that doesn't mean it will work.
One way we can make Jet a sub-type of Airplane is to have Jet be an empty class; all of its behaviour comes from Airplane. However, even this trivial solution is problematic: an Airplane and a trivial Jet will behave differently when passed to the instanceof operator. Hence we need to inspect all of the code which uses Airplane to make sure that there are no instanceof calls. Of course, this goes completely against the ideas of encapsulation and modularity; there's no way we can inspect code which may not even exist yet!
Normally we want to sub-class in order to do something differently to the superclass. In this case, we have to make sure that none of these differences is observable to any code using Airplane. This is even more difficult than syntactically checking for instanceof; we need to know what all of that code does.
That's impossible due to Rice's Theorem, hence there's no way to check sub-typing automatically, and hence the amount of bugs it causes.
For these reasons, many see sub-class polymorphism as an anti-pattern. There are other forms of polymorphism which don't suffer these problems though, for example "parameteric polymorphism" (referred to as "generics" in Java).
Liskov Substitution Principle
Comparison between sub-classing and sub-typing
Parameteric polymorphism
Arguments against sub-classing
Rice's theorem
One good example of when polymorphism is useful:
Let us say you have abstract class Animal, which defines methods and such common to all animals, such as makeNoise()
You then could extend it with subclasses such as Dog, Cat, Tiger.
Each of these animals overrides the methods of the abstract class, such as makeNoise(), to make these behaviors specific to their class. This is good because obiously each animal makes a different noise.
Here is one example where polymorphism is a great thing: collections.
Lets say I have an ArrayList<Animal> animals, and it is full of several different animals.
Polymorphism makes this code possible:
for(Animal a: animals)
{
a.makeNoise();
}
Because we know that each subclass has a makeNoise() method, we can trust that this will cause each animal object to call their specific version of makeNoise()
(e.g. the dog barks, the cat meows, the cow moos, all without you ever even having to worry about which animal does what.)
Another advantage is apparent when working with a team on a project. Let's say another developer added several new animals without ever telling you, and you have a collection of animals which now has some of these new animal types (which you dont even know exist!). You can still call the makeNoise() method (or any other method in the animal superclass) and trust that each type of animal will know what to do.
The nice thing about this animal superclass is that you can a extend a superclass and make as many new animal types as you want, without changing ANYTHING in the superclass, or breaking any code.
Remember the golden rule of polymorphism. You can use a subclass anywhere a superclass type object is expected.
For example:
Animal animal = new Dog;
It takes a while to learn to think polymorphically, but once you learn your code will improve a lot.
Polymorphism stems from inheritance. The whole idea is that you have a general base class and more specific derived classes. You can then write code that works with the base class... and polymorphims makes your code not only work with the base class, but all derived classes.
If you decide to have your super class have a method, say getPlaneEngineType(), and you make a new child class "Jet which inherits from Plane". Plane jet = new Jet() will/can still access the superclass's getPlaneEngineType. While you could still write your own getJetEngineType() to basically override the superclass's method with a super call, This means you can write code that will work with ANY "plane", not just with Plane or Jet or BigFlyer.
I don't think that's a good example, since it appears to confuse ontology and polymorphism.
You have to ask yourself, what aspect of the behaviour of a 'Jet' is different from an 'Airplane' that would justify complicating the software to model it with a different sub-type? The book's preview cuts off after one page into the example, but there doesn't seem any rationale to the design. Always ask yourself if there is a difference in behaviour rather than just adding classes to categorise things - usually that's better done with a property value or composing strategies than with sub-classes.
An example (simplified from a major project I lead in the early noughties) would be that an Aeroplane is final but has various properties of abstract types, one of which is the engine. There are various ways of calculating the thrust and fuel use of an engine - for fast jets bi-cubic interpolation table of values of thrust and fuel rate against Mach and throttle (and pressure and humidity sometimes), for Rockets the table method but does not require compensation for stalling the air at the engine intake; for props a simpler parametrised 'bootstrap' equation can be used. So you would have three classes of AbstractAeroEngine - JetEngine, RocketEngine and BootstrapEngine which would have implementations of methods which returned thrust and fuel use rate given a throttle setting and the current Mach number. (you should almost never sub-type a non-abstract type)
Note that the differences between the types of AbstractAeroEngine, although related to the different real world engines, are entirely differences in the how the software calculates the engine's thrust and fuel use - you are not constructing an ontology of classes which describe a view of the real world, but specialising the operations performed in the software to suit specific use cases.
How does using a superclass save me from making extra changes to rest of my code?
As all your engine calculations are polymorphic, it means that when you create an aeroplane, you can bolt on whatever engine thrust calculation suits it. If you find you have to cater for another method of calculating the thrust (as we did, several times) then you can add another sub-type of AeroEngine - as long as the implementation it supplies provides the trust and fuel rate, then the rest of the system doesn't care about the internal differences - the AeroPlane class will still ask its engine for the thrust. The aeroplane only cares that it has an engine which it can use the same way as any other engine, only the creation code has to know the type of the engine to bolt onto it, and the implementation of ScramJetEngine only cares about supersonic jet calculations - the parts of AeroPlane which calculate lift and drag, and the strategy for flying it don't have to change.
Polymorphism is powerful given that when there's a need to change a behavior you can change it by overriding a method.
Your superclass inherits its properties and behaviors to your subclasses extended by it. Thus it is safe to implicitly cast an object whose type is also from its superclass. Those common methods to your subclasses make them useful to implement an API. With that, polymorphism gives you the ability to extend a functionality of your code.
Polymorphism gains properties and all behaviors and interfaces of the super class. So is the behavior of a plane really the same as a jet?

can overriding of a method be prevented by downcasting to a superclass?

I'm trying to understand whether the answer to the following question is the same in all major OOP languages; and if not, then how do those languages differ.
Suppose I have class A that defines methods act and jump; method act calls method jump. A's subclass B overrides method jump (i.e., the appropriate syntax is used to ensure that whenever jump is called, the implementation in class B is used).
I have object b of class B. I want it to behave exactly as if it was of class A. In other words, I want the jump to be performed using the implementation in A. What are my options in different languages?
For example, can I achieve this with some form of downcasting? Or perhaps by creating a proxy object that knows which methods to call?
I would want to avoid creating a brand new object of class A and carefully setting up the sharing of internal state between a and b because that's obviously not future-proof, and complicated. I would also want to avoid copying the state of b into a brand new object of class A because there might be a lot of data to copy.
UPDATE
I asked this question specifically about Python, but it seems this is impossible to achieve in Python and technically it can be done... kinda..
It appears that apart from technical feasibility, there's a strong argument against doing this from a design perspective. I'm asking about that in a separate question.
The comments reiterated: Prefer composition over inheritance.
Inheritance works well when your subclasses have well defined behavioural differences from their superclass, but you'll frequently hit a point where that model gets awkward or stops making sense. At that point, you need to reconsider your design.
Composition is usually the better solution. Delegating your object's varying behaviour to a different object (or objects) may reduce or eliminate your need for subclassing.
In your case, the behavioural differences between class A and class B could be encapsulated in the Strategy pattern. You could then change the behaviour of class A (and class B, if still required) at the instance level, simply by assigning a new strategy.
The Strategy pattern may require more code in the short run, but it's clean and maintainable. Method swizzling, monkey patching, and all those cool things that allow us to poke around in our specific language implementation are fun, but the potential for unexpected side effects is high and the code tends to be difficult to maintain.
What you are asking is completely unrelated/unsupported by OOP programming.
If you subclass an object A with class B and override its methods, when a concrete instance of B is created then all the overriden/new implementation of the base methods are associated with it (either we talk about Java or C++ with virtual tables etc).
You have instantiated object B.
Why would you expect that you could/would/should be able to call the method of the superclass if you have overriden that method?
You could call it explicitely of course e.g. by calling super inside the method, but you can not do it automatically, and casting will not help you do that either.
I can't imagine why you would want to do that.
If you need to use class A then use class A.
If you need to override its functionality then use its subclass B.
Most programming languages go to some trouble to support dynamic dispatch of virtual functions (the case of calling the overridden method jump in a subclass instead of the parent class's implementation) -- to the degree that working around it or avoiding it is difficult. In general, specialization/polymorphism is a desirable feature -- arguably a goal of OOP in the first place.
Take a look at the Wikipedia article on Virtual Functions, which gives a useful overview of the support for virtual functions in many programming languages. It will give you a place to start when considering a specific language, as well as the trade-offs to weigh when looking at a language where the programmer can control how dispatch behaves (see the section on C++, for example).
So loosely, the answer to your question is, "No, the behavior is not the same in all programming languages." Furthermore, there is no language independent solution. C++ may be your best bet if you need the behavior.
You can actually do this with Python (sort of), with some awful hacks. It requires that you implement something like the wrappers we were discussing in your first Python-specific question, but as a subclass of B. You then need to implement write-proxying as well (the wrapper object shouldn't contain any of the state normally associated with the class hierarchy, it should redirect all attribute access to the underlying instance of B.
But rather than redirecting method lookup to A and then calling the method with the wrapped instance, you'd call the method passing the wrapper object as self. This is legal because the wrapper class is a subclass of B, so the wrapper instance is an instance of the classes whose methods you're calling.
This would be very strange code, requiring you to dynamically generate classes using both IS-A and HAS-A relationships at the same time. It would probably also end up fairly fragile and have bizarre results in a lot of corner cases (you generally can't write 100% perfect wrapper classes in Python exactly because this sort of strange thing is possible).
I'm completely leaving aside weather this is a good idea or not.

Object Oriented application problems in game development

I'll be as direct as I can concerning this problem, because there must be something I'm totally missing coming from a structured programming background.
Say I have a Player class. This Player class does things like changing its position in a game world. I call this method warp() which takes a Position class instance as a parameter to modify the internal position of the Player. This makes total sense to me in OO terms because I'm asking the player "to do" something.
The issue comes when I need to do other things in addition to just modifying the players position. For example, say I need to send that warp event to other players in an online game. Should that code also be within Player's warp() method? If not, then I would imagine declaring some kind of secondary method within say the Server class like warpPlayer(player, position). Doing this seems to reduce everything a player does to itself as a series of getters and setters, or am I just wrong here? Is this something that's totally normal? I've read countless times that a class that exposes everything as a series of getters/setters indicates a pretty poor abstraction (being used as a data structure instead of a class).
The same problem comes when you need to persist data, saving it to a file. Since "saving" a player to a file is at a different level of abstraction than the Player class, does it make sense to have a save() method within the player class? If not, declaring it externally like savePlayer(player) means that the savePlayer method would need a way to get every piece of data it needs out of the Player class, which ends up exposing the entire private implementation of the class.
Because OOP is the design methodology most used today (I assume?), there's got to be something I'm missing concerning these issues. I've discussed it with my peers who also do light development, and they too have also had these exact same issues with OOP. Maybe it's just that structured programming background that keeps us from understanding the full benefits of OOP as something more than providing methods to set and get private data so that it's changed and retrieved from one place.
Thanks in advance, and hopefully I don't sound too much like an idiot. For those who really need to know the languages involved with this design, it's Java on the server side and ActionScript 3 on the client side.
I advise you not to fear the fact, that player will be a class of getters and setters. What is object anyway? It's compilation of attributes and behaviours. In fact the more simple your classes are, the more benefits of an OOP you'll get in the development process.
I would breakdown your tasks/features into classes like that:
Player:
has hitpoints attribute
has position attribute
can walkTo(position), firing "walk" events
can healUp(hitpoints)
can takeDamage(hitpoints), firing "isHurt" event
can be checked for still living, like isAlive() method
Fighter extends Player (you should be able to cast Player to Fighter, when it's needed) :
has strength and other fighting params to calculate damage
can attack() firing "attack" event
World keeps track of all players:
listens to "walk" events (and prevents illegal movements)
listents to "isHurt" events (and checks if they are still alive)
Battle handles battles between two fighters:
constructor with two fighters as parameters (you only want to construct battle between players that are really fighting with each other)
listens to "attack" events from both players, calculates damage, and executes takeDamage method of the defending player
PlayerPersister extends AbstractPersister:
saves player's state in database
restores player's state from database
Of course, you game's breakdown will be much more complicated, but i hope this helps you to start thinking of problems in "more OOP" way :)
Don't worry too much about the Player class being a bunch of setters and getters. The Player class is a model class, and model classes tend to be like that. It's important that your model classes are small and clean, because they will be reused all over the program.
I think you should use the warpPlayer(player, position) approach you suggested. It keeps the Player class clean. If you don't want to pass the player into a function, maybe you could have a PlayerController class that contains a Player object and a warp(Position p) method. That way you can add event posting to the controller, and keep it out of the model.
As for saving the player, I'd do it by making Player implement some sort of serialisation interface. The player class is responsible for serializing and unserializing itself, and some other class would be responsible for writing the serialised data to/from a file.
I would probably consider having a Game object that keeps track of the player object. So you can do something like game.WarpPlayerTo(WarpLocations.Forest); If there are multiple players, maybe pass a player object or guid with it. I feel you can still keep it OO, and a game object would solve most of your issues I think.
The problems you are describing don't belong just to game design, but to software architecture in general. The common approach is to have a Dependency Injection (DI) and Inversion of Control (IoC) mechanisms. In short what you are trying to achieve is to be able to access a local Service of sorts from your objects, in order for example to propagate some event (e.g warp), log, etc.
Inversion of control means in short that instead of creating your objects directly, you tell some service to create them for you, that service in turn uses dependency injection to inform the objects about the services that they depend on.
If you are sharing data between different PCs for multiplayer, then a core function of the program is holding and synchronising that piece of state between the PCs. If you keep these values scattered about in many different classes, it will be difficult to synchronise.
In that case, I would advise that you design the data that needs to be synchronised between all the clients, and store that in a single class (e.g. GameState). This object will handle all the synchronisation between different PCs as well as allowing your local code to request changes to the data. It will then "drive" the game objects (Player, EnemyTank, etc) from its own state. [edit: the reason for this is that keeping this state as small as possible and transferring it efficiently between the clients will be a key part of your design. By keeping it all in one place it makes it much easier to do this, and encourages you to only put the absolute essentials in that class so that your comms don't become bloated with unnecessary data]
If you're not doing multiplayer, and you find that changing the player's position needs to update multiple objects (e.g. you want the camera to know that the player has moved so that it can follow him), then a good approach is to make the player responsible for its own position, but raise events/messages that other objects can subscribe/listen to in order to know when the player's position changes. So you move the player, and the camera gets a callback telling it that the player's position has been updated.
Another approach for this would be that the camera simply reads the player's position every frame in order to updaet itself - but this isn't as loosely coupled and flexible as using events.
Sometimes the trick to OOP is understanding what is an object, and what is functionality of an object. I think its often pretty easy for us to conceptually latch onto objects like Player, Monster, Item, etc as the "objects" in the system and then we need to create objects like Environment, Transporter, etc to link those objects together and it can get out-of-control depending on how the concepts work together, and what we need to accomplish.
The really good engineers I have worked with in the past have had a way of seeing systems as collections of objects. Sometimes in one system they would be business objects (like item, invoice, etc) and sometimes they would be objects that encapsulated processing logic (DyeInjectionProcessor, PersistanceManager) which cut across several operations and "objects" in the system. In both cases the metaphors worked for that particular system and made the overall process easier to implement, describe, and maintain.
The real power of OOP is in making things easier to express and manage in large complex systems. These are the OOP principles to target, and not worry as much whether it fits a rigid object hierarchy.
I havent worked in game design, so perhaps this advice will not work as well, in the systems I do work on and develop it has been a very beneficial change to think of OOP in terms of simplification and encapsulation rather than 1 real world object to 1 OOP class.
I'd like to expand on GrayWizardx's last paragraph to say that not all objects need to have the same level of complexity. It may very well fit your design to have objects that are simple collections of get/set properties. On the other hand, it is important to remember that objects can represent tasks or collections of tasks rather than real-world entities.
For example, a player object might not be responsible for moving the player, but instead representing its position and current state. A PlayerMovement object might contain logic for changing a player's position on screen or within the game world.
Before I start simply repeating what's already been said, I'll point towards the SOLID principles of OOP design (Aviad P. already mentioned two of them). They might provide some high-level guidelines for creating a good object model for a game.