Using red-black tree for non-linear optimization - optimization

Suppose we have finite data set {x_i, y_i}.
I am looking for an efficient data structure for the data set, such that given a,b it will be possible to find efficiently x,y such that x > a, y > b and x*y is minimal.
Can it be done using a red black tree ?
Can we do it in complexity O(log n)?

Well, without a preprocessing step, of course you can't do it in O(log n) with any data structure, because that's not enough time to look at all the data. So I'll assume you mean "after preprocessing".
Red-black trees are intended for single-dimension sorting, and so are unlikely to be of much help here. I would expect a kD-tree to work well here, using a nearest-neighbor-esque query: You perform a depth-first traversal of the tree, skipping branches whose bounding rectangle either violates the x and y conditions or cannot contain a lower product than the lowest admissible product already found. To speed things up further, each node in the kD-tree could additionally hold the lowest product among any of its descendants; intuitively I would expect that to have a practical benefit, but not to improve the worst-case time complexity.
Incidentally, red-black trees aren't generally useful for preprocessed data. They're designed for efficient dynamic updates, which of course you won't be doing on a per-query basis. They offer the same asymptotic depth guarantees as other sorted trees, but with a higher constant factor.

Related

Time Complexity Analysis of Recursive Tree Treversal Algorithm

I am supposed to design a recursive algorithm that traverses a tree and sets the cardinality property for every node. The cardinality property is the number of nodes that are in the subtree where the currently traversed node is the root.
Here's my algorithm in pseudo/ python code:
SetCardinality(node)
if node exists:
node.card = 1 + SetCardinality(x.left_child) + SetCardinality(x.right_child)
return node.card
else:
return 0
I'm having a hard time coming up with the recurrence relation that describes this function. I figured out that the worst-case input would be a tree of height = n. I saw on the internet that a recurrent relation for such a tree in this algorithm might be:
T(n) = T(n-1) + n but I don't know how the n in the relation corresponds to the algorithm.
You have to ask yourself: How many nodes does the algorithm visit? You will notice that if you run your algorithm on the root node, it will visit each node exactly once, which is expected as it is essentially a depth-first search.
Therefore, if the rest of your algorithm is constant-time operations, we have a time complexity of O(n) for the total number of nodes n.
Now, if you want to express it in terms of the height of the tree, you need to know more about the given tree. If it's a complete binary tree then the height is O(logn) and therefore the time complexity would be O(2h). But expressing it in terms of total nodes is simpler. Notice also that the shape of the tree does not really matter for your time complexity, as you will be visiting each node exactly once regardless.

What is the complexity of networkx.is_isomorphic?

What is the complexity of networkx.is_isomorphic(graph1, graph2)?
I am particularly interested to know it in the case of directed acyclic graphs.
Cheers.
According to the documents of nx.is_isomorphic the vf2-algorithm is implemented and even the original scientific reference is given.
"L. P. Cordella, P. Foggia, C. Sansone, M. Vento, “An Improved Algorithm for Matching Large Graphs”, 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, Cuen, pp. 149-159, 2001."
The boost library states for the vf2-algorithm the following complexity:
"The spatial complexity of VF2 is of order O(V), where V is the (maximum) number of vertices of the two graphs. Time complexity is O(V^2) in the best case and O(V!·V) in the worst case."

Breadth first or Depth first

There is a theory that says six degrees of seperations is the highest
degree for people to be connected through a chain of acquaintances.
(You know the Baker - Degree of seperation 1, the Baker knows someone
you don't know - Degree of separation 2)
We have a list of People P, list A of corresponding acquaintances
among these people, and a person x
We are trying to implement an algorithm to check if person x respects
the six degrees of separations. It returns true if the distance from x
to all other people in P is at most six, false otherwise.
We are tying to accomplish O(|P| + |A|) in the worst-case.
To implement this algorithm, I thought about implementing an adjacency list over an adjacency matrix to represent the Graph G with vertices P and edges A, because an Adjacency Matrix would take O(n^2) to traverse.
Now I thought about using either BFS or DFS, but I can't seem to find a reason as to why the other is more optimal for this case.
I want to use BFS or DFS to store the distances from x in an array d, and then loop over the array d to look if any Degree is larger than 6.
DFS and BFS have the same Time Complexity, but Depth is better(faster?) in most cases at finding the first Degree larger than 6, whereas Breadth is better at excluding all Degrees > 6 simultaneously.
After DFS or BFS I would then loop over the array containing the distances from person x, and return true if there was no entry >6 and false when one is found.
With BFS, the degrees of separations would always be at the end of the Array, which would maybe lead to a higher time complexity?
With DFS, the degrees of separations would be randomly scattered in the Array, but the chance to have a degree of separation higher than 6 early in the search is higher.
I don't know if it makes any difference to the Time Complexity if using DFS or BFS here.
Time complexity of BFS and DFS is exactly the same. Both methods visit all connected vertices of the graph, so in both cases you have O(V + E), where V is the number of vertices and E is the number of edges.
That being said, sometimes one algorithm can be preferred over the other precisely because the order of vertex visitation is different. For instance, if you were to evaluate a mathematical expression, DFS would be much more convenient.
In your case, BFS could be used to optimize graph traversal, because you can simply cut-off BFS at the required degree of separation level. All the people who have the required (or bigger) degree of separation would be left unmarked as visited.
The same trick would be much more convoluted to implement with DFS, because as you've astutely noticed, DFS first gets "to the bottom" of the graph, and then it goes back recursively (or via stack) up level by level.
I believe that you can use the the Dijkstra algorithm.
Is a BFS approach that updates your path, is the path have a smaller value. Think as distance have always a cost of 1 and, if you have two friends (A and B) for a person N.
Those friends have a common friend C but, in a first time your algorithm checks a distance for friend A with cost 4 and mark as visited, they can't check the friend B that maybe have a distance of 3. The Dijkstra will help you doing checking this.
The Dijkstra solve this in O(|V|+|E|log|V)
See more at https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

When analyzing the worst case time complexity of search algorithms using Big O notation, why is the variable representing the input nonexistent?

Thanks for your willingness to help.
Straight to the point, I'm confused with the use of Big O notation when analyzing the worst case time complexity of search algorithms.
For example, the worst case time complexity of Alpha-Beta Pruning is O(b^d) where ^ means ~ to the power of ~, b representing the average branching factor and d representing the depth of the search tree.
I do get that the worst case time complexity would be less or equal to a positive constant multiplied by b^d, but why is the use of big O notation permitted here? Where did the variable n, the input size, go? I do know that the input of same size might cause significant difference in time complexity of an algorithm.
All of the research I've done only explains "the use of big o notation in the analysis of worst case time complexity" in terms of the growth function, a function that has variable y as time complexity and variable x as input size. There are also formal definitions of big o notation, which make me even more confused with the question above. definition 1definition 2
Any attempts to answer my question would be greatly appreciated.
The input size you refer here to n is in this case d. If n is the amount of entries in your tree, d can be calculated by ln_2(n), assuming your tree is a balanced binary tree.
Big O notation implies that you are discussing what the runtime would be for a very large n. In the case you noted, O(b^d), the n is the variable that changes with input size. In this case, d would be your n. As you've found, some notations make use of many variables.
n is just a general term for the number of elements, but runtime could vary on many factors- depth of a tree, or a different list entirely. For example, to traverse lists like this:
for n in firstList:
for k in secondList:
do stuff
the cost would be O(n*k).

Implementing a 2D recursive spatial filter using Scipy

Minimally, I would like to know how to achieve what is stated in the title. Specifically, signal.lfilter seems like the only implementation of a difference equation filter in scipy, but it is 1D, as shown in the docs. I would like to know how to implement a 2D version as described by this difference equation. If that's as simple as "bro, use this function," please let me know, pardon my naiveté, and feel free to disregard the rest of the post.
I am new to DSP and acknowledging there might be a different approach to answering my question so I will explain the broader goal and give context for the question in the hopes someone knows how do want I want with Scipy, or perhaps a better way than what I explicitly asked for.
To get straight into it, broadly speaking I am using vectorized computation methods (Numpy/Scipy) to implement a Monte Carlo simulation to improve upon a naive for loop. I have successfully abstracted most of my operations to array computation / linear algebra, but a few specific ones (recursive computations) have eluded my intuition and I continually end up in the digital signal processing world when I go looking for how this type of thing has been done by others (that or machine learning but those "frameworks" are much opinionated). The reason most of my google searches end up on scipy.signal or scipy.ndimage library references is clear to me at this point, and subsequent to accepting the "signal" representation of my data, I have spent a considerable amount of time (about as much as reasonable for a field that is not my own) ramping up the learning curve to try and figure out what I need from these libraries.
My simulation entails updating a vector of data representing the state of a system each period for n periods, and then repeating that whole process a "Monte Carlo" amount of times. The updates in each of n periods are inherently recursive as the next depends on the state of the prior. It can be characterized as a difference equation as linked above. Additionally this vector is theoretically indexed on an grid of points with uneven stepsize. Here is an example vector y and its theoretical grid t:
y = np.r_[0.0024, 0.004, 0.0058, 0.0083, 0.0099, 0.0133, 0.0164]
t = np.r_[0.25, 0.5, 1, 2, 5, 10, 20]
I need to iteratively perform numerous operations to y for each of n "updates." Specifically, I am computing the curvature along the curve y(t) using finite difference approximations and using the result at each point to adjust the corresponding y(t) prior to the next update. In a loop this amounts to inplace variable reassignment with the desired update in each iteration.
y += some_function(y)
Not only does this seem inefficient, but vectorizing things seems intuitive given y is a vector to begin with. Furthermore I am interested in preserving each "updated" y(t) along the n updates, which would require a data structure of dimensions len(y) x n. At this point, why not perform the updates inplace in the array? This is wherein lies the question. Many of the update operations I have succesfully vectorized the "Numpy way" (such as adding random variates to each point), but some appear overly complex in the array world.
Specifically, as mentioned above the one involving computing curvature at each element using its neighbouring two elements, and then imediately using that result to update the next row of the array before performing its own curvature "update." I was able to implement a non-recursive version (each row fails to consider its "updated self" from the prior row) of the curvature operation using ndimage generic_filter. Given the uneven grid, I have unique coefficients (kernel weights) for each triplet in the kernel footprint (instead of always using [1,-2,1] for y'' if I had a uniform grid). This last part has already forced me to use a spatial filter from ndimage rather than a 1d convolution. I'll point out, something conceptually similar was discussed in this math.exchange post, and it seems to me only the third response saliently addressed the difference between mathematical notion of "convolution" which should be associative from general spatial filtering kernels that would require two sequential filtering operations or a cleverly merged kernel.
In any case this does not seem to actually address my concern as it is not about 2D recursion filtering but rather having a backwards looking kernel footprint. Additionally, I think I've concluded it is not applicable in that this only allows for "recursion" (backward looking kernel footprints in the spatial filtering world) in a manner directly proportional to the size of the recursion. Meaning if I wanted to filter each of n rows incorporating calculations on all prior rows, it would require a convolution kernel far too big (for my n anyways). If I'm understanding all this correctly, a recursive linear filter is algorithmically more efficient in that it returns (for use in computation) the result of itself applied over the previous n samples (up to a level where the stability of the algorithm is affected) using another companion vector (z). In my case, I would only need to look back one step at output signal y[n-1] to compute y[n] from curvature at x[n] as the rest works itself out like a cumsum. signal.lfilter works for this, but I can't used that to compute curvature, as that requires a kernel footprint that can "see" at least its left and right neighbors (pixels), which is how I ended up using generic_filter.
It seems to me I should be able to do both simultaneously with one filter namely spatial and recursive filtering; or somehow I've missed the maths of how this could be mathematically simplified/combined (convolution of multiples kernels?).
It seems like this should be a common problem, but perhaps it is rarely relevant to do both at once in signal processing and image filtering. Perhaps this is why you don't use signals libraries solely to implement a fast monte carlo simulation; though it seems less esoteric than using a tensor math library to implement a recursive neural network scan ... which I'm attempting to do right now.
EDIT: For those familiar with the theoretical side of DSP, I know that what I am describing, the process of designing a recursive filters with arbitrary impulse responses, is achieved by employing a mathematical technique called the z-transform which I understand is generally used for two things:
converting between the recursion coefficients and the frequency response
combining cascaded and parallel stages into a single filter
Both are exactly what I am trying to accomplish.
Also, reworded title away from FIR / IIR because those imply specific definitions of "recursion" and may be confusing / misnomer.