Unable to access the service instance from within an implementation of IDataContractSurrogate - wcf

this is my first post, and I really have tried hard to find an answer, but am drawing a blank thus far.
My implementation of IDataContractSurrogate creates surrogates for certain 'cached' objects which I maintain (this works fine). What doesn't work is that in order for this system to operate effectively, it needs to access the service instance for some properties of the instance which it is maintaining from the interaction with its client. Also, when my implementation of IDataContractSurrogate works in its 'client mode' it needs access to the properties of the client instance in a similar way. Access to the information from the client and service instance affects how I create my surrogate types (or rather SHOULD do if I can answer this question!)
My service instancing is PerSession and concurrent.
On the server side, calls to GetDataContractType and GetDeserializedObject contain a valid OperationContext.Current from which I can of course retreive the service instance. However on the client side, none of the calls yield an OperationContext.Current. We are still in an operation as I am translating the surrogate types to the data contract types after they have been sent from the server as part of its response to the client request so I would have expected one? Maybe the entire idea of using OperationContext.Current from outside of an Operation invocation is wrong?
So, moving on, and trying to fix this problem I have examined the clientRuntime/dispatchRuntime object which is available when applying my customer behaviour, however that doesn't appear to give me any form of access to the client instance, unless I have a message reference perhaps... and then calling InstanceProvider. However I don't have the message.
Another idea I had was to use IInstanceProvider myself and then maybe build up a dictionary of all the ones which are dished out... but that's no good because I don't appear to have access to any session related piece of information from within my implementation of IDataContractSurrogate to use as a dictionary key.
I had originally implemented my own serializer but thats not what I want. I'm happy with the built in serializer, and changing the objects to special surrogates is exactly what I need to do, with the added bonus that every child property comes in for inspection.
I have also looked at applying a service behavior, but that also does not appear to yield a service instance, and also does not let me set a Surrogate implementation property.
I simply do not know how to gain access to the current session/instance from within my implementation IDataContractSurrogate. Any help would be greatly appreciated.
Many thanks,
Sean

I have solved my problem. The short answer is that I implemented IClientMessageFormatter and IDispatchMessageFormatter to accomplish what I needed. Inside SerializeReply I could always access the ServiceInstance as OperationContext.Current is valid. It was more work as I had to implement my own serialization and deserialization, but works flawlessly. The only issue remaining would be that there is no way to get the client proxy which is processing the response, but so far that is not a show stopper for me.

Related

Sabre SOAP Service class, MessageHeaderValue property

I have inherited the responsibility for maintaining our Sabre client, and have a need to update our use of the TravelItineraryReadRQ (and, maybe TravelItineraryReadLLSRQ) Actions. I am still very new to the Sabre APIs (and relatively inexperienced with WCF and SOAP), and there is one detail that I am seeing in our codebase that concerns me.
Generated from the API's WSDL, our existing code contains the classes TravelItineraryReadService, TravelItineraryReadRQ and TravelItineraryReadRS (and, of course, many others). That's fine.
My predecessor, however, extended TravelItineraryReadService by adding a constructor, in which he sets the MessageHeader property. I cannot find any code which consumes this property (and it is not an override of a virtual or abstract property defined in SoapHttpClientProtocol, the base class). I might ignore this code, therefore, (a) if I didn't suspect that somehow a SOAP wrapper used the values set in the message header and (b) if my predecessor hadn't set it as follows:
MessageHeaderValue = MessageHeader.Create(connection, "TravelItineraryReadLLS", "TravelItineraryReadLLSRQ");
You'll see that he is using the 'LLS' variant of the API and Action Code, yet the TravelItineraryReadService methods consume / return the 'non-LLS' request and result objects.
Our code logs the RQ and RS packets it sends and receives, and we're sending / receiving the 'non-LLS' variants - so perhaps I am worrying over nothing. But, the deadline is looming and I am in the dark about how this code might be influencing things.
If you have any information that would help me understand how MessageHeaderValue is used (and, its equivalent is present on many other Sabre XxxService WSDL-Generated classes) that would be very helpful.
If, at the same time, you have similar information about the SecurityValue property, that would be good, too.

How should one write an XPC service with state?

I've read the NSXPC* docs, which advise making the vended service as stateless as possible. It's a good idea, at least to the docs and examples I've read, since the service and the calling app see each other as singletons and only one instance of the service runs at a time. This means that the methods are essentially non-member functions (to use a C++ term).
Why do I want to get around this? I want to put the network code into a XPC. Since the XPC will be working with a GUI app, which will have multiple windows, I need to support multiple simultaneous connections. That doesn't work with singletons, at least directly.
The network API is C-based, with the main state type a pointer to a custom struct. So why don't we do something similar:
Have the creation function return a value type, like NSUUID or something. (Passing a pointer across processes would be a bad idea.)
In the service, create a NSDictionary (or std::map or whatever) mapping between the NSUUID and the API C-pointer.
The various service APIs take the UUID and convert it to the C-pointer to use the network API.
Aside: Since the token is random, if the XPC service crashes, the main app will have a token that's useless after the XPC is restarted. Maybe I should a URL (which would have all the information to restart) instead. But then we get potential conflicts if two connections happen to be to the same server. Maybe I can combine the ideas with the token being a URL/UUID pair. (The UUID value would move from being returned by the service to supplied by the main app.)
Would this be a good way to implement state-full XPCs?
You may want to add a method to your service interface which replies with a long-lived proxy object. You can arrange for this to happen by means of a call to -[NSXPCInterface setInterface:forSelector:argumentIndex:ofReply:], passing YES for the last parameter. Details are available here:
https://developer.apple.com/library/mac/documentation/Foundation/Reference/NSXPCInterface_reference/#//apple_ref/occ/instm/NSXPCInterface/setInterface:forSelector:argumentIndex:ofReply:

Passing client context using Unity in WCF service application

I have a WCF service application (actually, it uses WCF Web API preview 5) that intercepts each request and extracts several header values passed from the client. The idea is that the 'interceptor' will extract these values and setup a ClientContext object that is then globally available within the application for the duration of the request. The server is stateless, so the context is per-call.
My problem is that the application uses IoC (Unity) for dependency injection so there is no use of singleton's, etc. Any class that needs to use the context receives it via DI.
So, how do I 'dynamically' create a new context object for each request and make sure that it is used by the container for the duration of that request? I also need to be sure that it is completely thread-safe in that each request is truly using the correct instance.
UPDATE
So I realize as I look into the suggestions below that part of my problem is encapsulation. The idea is that the interface used for the context (IClientContext) contains only read-only properties so that the rest of the application code doesn't have the ability to make changes. (And in a team development environment, if the code allows it, someone will inevitably do it.)
As a result, in my message handler that intercepts the request, I can get an instance of the type implementing the interface from the container but I can't make use of it. I still want to only expose a read-only interface to all other code but need a way to set the property values. Any ideas?
I'm considering implementing two interfaces, one that provides read-only access and one that allows me to initialize the instance. Or casting the resolved object to a type that allows me to set the values. Unfortunately, this isn't fool-proof either but unless someone has a better idea, it might be the best I can do.
Read Andrew Oakley's Blog on WCF specific lifetime managers. He creates a UnityOperationContextLifetimeManager:
we came up with the idea to build a Unity lifetime manager tied to
WCF's OperationContext. That way, our container objects would live
only for the lifetime of the request...
Configure your context class with that lifetime manager and then just resolve it. It should give you an "operation singleton".
Sounds like you need a Unity LifetimeManager. See this SO question or this MSDN article.

Accessing the ServiceModel layer directly

I'm new to WCF, so apologies if I'm missing the boat completely.
It seems like WCF provides plenty of functionality for using the "Channel" layer by itself. For example, to create a server, you can create a channel listener from a binding and call WaitForRequest, Reply, etc. These methods all deal with Message objects, so it is up to you to do something with the message.
My question has to do with what happens once we've already got a message. Suppose I have an object that implements a service, described by a ServiceContract, and a Message object which I know represents a call to a particular operation. What I'd really like to do is something like:
Message requestMessage = GetMessageSomehow();
OperationDescription oc = GetContractForMessage();
Message replyMessage = Invoke(myService, oc, requestMessage);
At the very least, if I could somehow access the IOperationInvoker and IDispatchMessageFormatter objects that get created for a type, it would be pretty simple to chain them together to get the functionality I'm looking for.
In my particular case, I need to implement some simple Soap 1.1 and 1.2 services (with no WS-Addressing). I already have HttpListenerRequest/Response objects, and can route based off of either the SOAPAction or ContentType header.
I think having this functionality would also be pretty useful for unit testing. For example, I need to implement to existing clients. It would be nice to have unit tests where I could test that the Attributes on the service class are correct (i.e. that the message that I know I will be getting gets properly translated into a call on my service interface).
Any suggestions?
Serialization/Deserialization from that Message instance to actual parameters for a call is usually done by an IDispatchMessageFormatter / IClientMessageFormatter.
On the server side, an IDispatchMessageFormatter is injected into the DispatchRuntime by a custom operation behavior that the data contract serializer (or other serializer) inserts.
But... if you're not using ServiceHost, there's no DispatchRuntime. Basically, if you want all of this, you're going to have to do all the hard work yourself :)
That said, if you can get an OperationDescription object, you should be able to instantiate a DataContractSerializerOperationBehavior, but you won't be able to get an IDispatchMessageFormatter out of it... you can get an XmlObjectSerializer, though, which might, or might not, be useful for you.
Notice that an IOperationInvoker wouldn't help all that much, since that presumes you've already done message serialization/deserialization, so it's not really all that useful (and the rest of the functionality is fairly simple for basic use cases if you want to roll it yourself)

Will changing an Object signature break a WCF method call using that Object?

If I have an object that holds the parameters for my method. I need to change the Object to have an additional property. I have full control over the server, but not over all of the clients. Will this change make those clients break?
I am using a self-hosted service with a binary endpoint.
I am new to WCF so my apologies if this is a silly question.
I guess you are asking about a class that represents your DataContract.
Learn about DataContract versioning and how various changes in your DataContract affect the compatibility in MSDN
In short the answer is No, it will not break the client code. The serialized graph of the data contract will deserialize to the available data members matching by their names and assigned through the property setter method. Obviously in this case, your newly added data member will not have value. Since you have full control on the server side code, you just have to make sure this newly added member need to be dealt in such a way that it is meaningful in the new implementation and allow for default/unassigned value.