Automocking with LightInject plus Nsubstitute, how? - ioc-container

I am new to both libraries and before committing to their usage on a large project I need clarification on my options for low-code effort automocking in my unit tests.
After spending some time on Google I have concluded that, unlike some other IOC/Mocking product pairings, a ready-made plugin library is not available for LightInject+Nsubstitute to simplify the declaration of do-nothing default mocks in the arrange stage of a unit test.
I have read the LightInject docs on how to override a LightInject container with a temporary enhanced mock object just for the scope of a unit test but what about all the do-nothing default isolation mocks that a unit test might touch. Is there a way to automate their creation within the LightInject container?
The internal IOC container behaviour I am looking for is:
public class LightInject.ServiceContainer
{
..
public T GetInstance<T)
{
if (( this.RegisteredInterfaces.Any( i => i.Itype == T ) == false )
&& ( this.TemporaryUnitTestOverrides.Any( i => i.Itype == T ) == false ))
&& ( /* this container is configured with an automocking delegate */ ))
return autoMockCreatorDelegate<T>.Invoke();
}
It seems like LightInject's IProxy and Interceptors provide some internal mock object building blocks but the Nsubstitute library is full featured in comparison.
Clarification on what I mean by default do nothing mock and an enhanced mock.
// default do nothing mock
var calculator = Substitute.For<ICalculator>();
// Enhanced mock that will return 3 for .Add(1,2)
var calculator = Substitute.For<ICalculator>();
calculator.Add(1, 2).Returns(3);
Obviously the second enhanced type of mock will need to be crafted locally per unit test.

I am the author of LightInject and would really like to help you out.
Let me look into this and get back to you. In the meanwhile you might want to check out this library at
LightInject.AutopMoq which is a third party contribution to the LightInject container. It uses Moq instead of NSubstitute, but the general concept should be similar to what you are asking for.
That being said, I did some work a while ago that simplifies automocking even further and will take a look at it it and see how that can be integrated with NSubstitute.
Edit
This is a super simple automocking implementation that works with any "substitute" framework.
using System.Diagnostics;
using LightInject;
using NSubstitute;
public interface IFoo { }
class Program
{
static void Main(string[] args)
{
var serviceContainer = new ServiceContainer();
serviceContainer.RegisterFallback((type, s) => true, request => CreateMock(request.ServiceType));
var foo = serviceContainer.GetInstance<IFoo>();
Debug.Assert(foo is IFoo);
}
private static object CreateMock(Type serviceType)
{
return Substitute.For(new Type[] { serviceType }, null);
}
}
Best regards
Bernhard Richter

Some feedback as promised in my comment to the accepted answer. I applied the suggestion from the author of LightInject with success in some simple unit tests.
After getting the basics working I decided to hide the Ioc service mocking setup code in a base class plus something I have called a MockingContext, the end result is cleaner lighter unit test code. The mocking context class also ensures that foreach Nsubstitute configured mock type passed to the Ioc service as a short term automock override, there is a matching LightInjet.Service.EndMocking( T ) call. This removes the danger that configured mocks might pollute the auto mocking assumptions of a following unit test.
In the example ClassC depends on IFooA and IFooB (no constructor injection). For the unit test below, IFooA is auto mocked by LightInject without explicit code whereas IFooB is configured via an Nsubstitute call and also passed to LightInject in the MockingContext.Add<>() method.
[TestClass]
public class UnitTest1 : AutoMocking
{
[TestMethod]
public void Test_1()
{
using (var mc = MockingContext)
{
// No need to mention IFooA here, LightInject will auto mock
// any interface not previously declared to it.
// Given
var mockB = mc.Add<IFooB>();
mockB.MethodY().Returns("Mock Value OOO");
var sut = new ClassC();
// When
var testResult = sut.MethodZ();
// Then
Assert.AreEqual(testResult, "MethodZ() received=Mock Value OOO");
}
}

Related

How do I mock Func<T> factory dependency to return different objects using AutoMock?

I'm trying to write a test for a class that has a constructor dependency on Func<T>. In order to complete successfully the function under test needs to create a number of separate objects of type T.
When running in production, AutoFac generates a new T every time factory() is called, however when writing a test using AutoMock it returns the same object when it is called again.
Test case below showing the difference in behaviour when using AutoFac and AutoMock. I'd expect both of these to pass, but the AutoMock one fails.
public class TestClass
{
private readonly Func<TestDep> factory;
public TestClass(Func<TestDep> factory)
{
this.factory = factory;
}
public TestDep Get()
{
return factory();
}
}
public class TestDep
{}
[TestMethod()]
public void TestIt()
{
using var autoMock = AutoMock.GetStrict();
var testClass = autoMock.Create<TestClass>();
var obj1 = testClass.Get();
var obj2 = testClass.Get();
Assert.AreNotEqual(obj1, obj2);
}
[TestMethod()]
public void TestIt2()
{
var builder = new ContainerBuilder();
builder.RegisterSource(new AnyConcreteTypeNotAlreadyRegisteredSource());
var container = builder.Build();
var testClass = container.Resolve<TestClass>();
var obj1 = testClass.Get();
var obj2 = testClass.Get();
Assert.AreNotEqual(obj1, obj2);
}
AutoMock (from the Autofac.Extras.Moq package) is primarily useful for setting up complex mocks. Which is to say, you have a single object with a lot of dependencies and it's really hard to set that object up because it doesn't have a parameterless constructor. Moq doesn't let you set up objects with constructor parameters by default, so having something that fills the gap is useful.
However, the mocks you get from it are treated like any other mock you might get from Moq. When you set up a mock instance with Moq, you're not getting a new one every time unless you also implement the factory logic yourself.
AutoMock is not for mocking Autofac behavior. The Func<T> support where Autofac calls a resolve operation on every call to the Func<T> - that's Autofac, not Moq.
It makes sense for AutoMock to use InstancePerLifetimeScope because, just like setting up mocks with plain Moq, you need to be able to get the mock instance back to configure it and validate against it. It would be much harder if it was new every time.
Obviously there are ways to work around that, and with a non-trivial amount of breaking changes you could probably implement InstancePerDependency semantics in there, but there's really not much value in doing that at this point since that's not really what this is for... and you could always create two different AutoMock instances to get two different mocks.
A much better way to go, in general, is to provide useful abstractions and use Autofac with mocks in the container.
For example, say you have something like...
public class ThingToTest
{
public ThingToTest(PackageSender sender) { /* ... */ }
}
public class PackageSender
{
public PackageSender(AddressChecker checker, DataContext context) { /* ... */ }
}
public class AddressChecker { }
public class DataContext { }
If you're trying to set up ThingToTest, you can see how also setting up a PackageSender is going to be complex, and you'd likely want something like AutoMock to handle that.
However, you can make your life easier by introducing an interface there.
public class ThingToTest
{
public ThingToTest(IPackageSender sender) { /* ... */ }
}
public interface IPackageSender { }
public class PackageSender : IPackageSender { }
By hiding all the complexity behind the interface, you now can mock just IPackageSender using plain Moq (or whatever other mocking framework you like, or even creating a manual stub implementation). You wouldn't even need to include Autofac in the mix because you could mock the dependency directly and pass it in.
Point being, you can design your way into making testing and setup easier, which is why, in the comments on your question, I asked why you were doing things that way (which, at the time of this writing, never did get answered). I would strongly recommend designing things to be easier to test if possible.

How to use WebApplicationFactory in .net6 (without speakable entry point)

In ASP.NET Core 6 default template moves everything from Sturtup.cs into Program.cs, and uses top-level statements in Program.cs, so there's no more (speakable) Program class ether.
That looks awesome, but now, I need to test all of this. WebApplicationFactory<T> still expects me to pass entry-point-class, but I cannot do this (due to it's name now being unspeakable).
How integration tests are expected to be configured in ASP.NET Core 6?
Note that if you are trying to use xUnit and its IClassFixture<T> pattern, you will run into problems if you just use the InternalsVisibleTo approach. Specifically, you'll get something like this:
"Inconsistent accessibility: base class WebApplicationFactory<Program> is less accessible than class CustomWebApplicationFactory."
Of course you can solve this by making CustomWebApplicationFactory internal but it only moves the problem as now your unit test class will give the same error. When you try to change it there, you will find that xUnit requires that tests have a public constructor (not an internal one) and you'll be blocked.
The solution that avoids all of this and allows you to still use IClassFixture<Program> is to make the Program class public. You can obviously do this by getting rid of the magic no class version of Program.cs, but if you don't want to completely change that file you can just add this line:
public partial class Program { } // so you can reference it from tests
Of course once it's public you can use it from your test project and everything works.
As an aside, the reason why you typically want to prefer using IClassFixture is that it allows you to set up your WebApplicationFactory just once in the test class constructor, and grab an HttpClient instance from it that you can store as a field. This allows all of your tests to be shorter since they only need to reference the client instance, not the factory.
Example:
public class HomePage_Get : IClassFixture<CustomWebApplicationFactory>
{
private readonly HttpClient _client = new HttpClient();
public HomePage_Get(CustomWebApplicationFactory factory)
{
_client = factory.CreateClient();
}
[Fact]
public async Task IncludesWelcome()
{
HttpResponseMessage response = await _client.GetAsync("/");
response.EnsureSuccessStatusCode();
string stringResponse = await response.Content.ReadAsStringAsync();
Assert.Contains("Welcome.", stringResponse);
}
}
Finally note that Damian Edwards' MinimalAPIPlayground was updated to use this approach after we discussed the issue. See this commit
The problem is was solved on ASP.NET Core RC1, but as of now (September 20, 2021) the docs are incomplete.
The compiler generates a Program class behind the scenes that can be used with WebApplicationFactory<>. The class isn't public though so the InternalsVisibleTo project setting should be used.
Damien Edwards' Minimal API sample uses the latest nightly bits. The test web app class is declared as :
internal class PlaygroundApplication : WebApplicationFactory<Program>
{
private readonly string _environment;
public PlaygroundApplication(string environment = "Development")
{
_environment = environment;
}
protected override IHost CreateHost(IHostBuilder builder)
{
...
In the application project file,InternalsVisibleTo is used to make the Program class visible to the test project:
<ItemGroup>
<InternalsVisibleTo Include="MinimalApiPlayground.Tests" />
</ItemGroup>
RC1 is feature complete and, judging by previous major versions, it will probably be the first version to have a Go Live license, which means it's supported in production.
I tried
<InternalsVisibleTo Include="MinimalApiPlayground.Tests" />
but no cigar! Removed it and added a partial class to program.cs
#pragma warning disable CA1050 // Declare types in namespaces
public partial class Program
{
}
#pragma warning restore CA1050 // Declare types in namespaces
amazingly it worked.

Guice Names.bindProperties(binder(), properties) on output of a module?

I use an external service to provide properties, but want to make those properties available as #Named(..) vars. Trying to do this in a configure method fails with npe:
Names.bindProperties(binder(), myPropRetriever.getProperties());
is failing because the myPropRetriever isn't appearing until guice has done it's work. I can see why this makes sense - anyone know of any funky hacks that might work around though? Would be handy in this instance..
Thanks to durron597 for the pointer to the related question which gave me enough to figure out. The answer is to use a child injector to take action on the previous injectors output. Example below:
Injector propInjector = Guice.createInjector(new PropertiesModule());
PropertiesService propService = propInjector.getInstance(PropertiesService.class);
Injector injector = propInjector.createChildInjector(new MyModule(Objects.firstNonNull(propService.getProperties(), new Properties())));
Injector is now your injector for the remainder of the app.
And then in MyModule you can take action on the created objects:
public class MyModule extends AbstractModule {
private final Properties properties;
public MyModule(Properties properties){
this.properties=properties;
}
#Override
protected void configure() {
// export all the properties as bindings
Names.bindProperties(binder(), properties);
// move on to bindings
// bind(..);
}
}
In case it helps anyone else..!

Using Test Doubles with DbEntityEntry and DbPropertyEntry

I am using the new Test Doubles in EF6 as outlined here from MSDN . VS2013 with Moq & nUnit.
All was good until I had to do something like this:
var myFoo = context.Foos.Find(id);
and then:
myFoo.Name = "Bar";
and then :
context.Entry(myFoo).Property("Name").IsModified = true;
At this point is where I get an error:
Additional information: Member 'IsModified' cannot be called for
property 'Name' because the entity of type
'Foo' does not exist in the context. To add an
entity to the context call the Add or Attach method of
DbSet.
Although, When I examine the 'Foos' in the context with an AddWatch I can see all items I Add'ed before running the test. So they are there.
I have created the FakeDbSet (or TestDbSet) from the article. I am putting each FakeDbSet in the FakeContext at the constructor where each one gets initialized. Like this:
Foos = new FakeDbSet<Foo>();
My question is, is it possible to work with the FakeDbSet and the FakeContext with the test doubles scenario in such a way to have access to DbEntityEntry and DBPropertyEntry from the test double? Thanks!
I can see all items I Add'ed before running the test. So they are there.
Effectively, you've only added items to an ObservableCollection. The context.Entry method reaches much deeper than that. It requires a change tracker to be actively involved in adding, modifying and removing entities. If you want to mock this change tracker, the ObjectStateManager (ignoring the fact that it's not designed to be mocked at all), good luck! It's got over 4000 lines of code.
Frankly, I don't understand all these blogs and articles about mocking EF. Only the numerous differences between LINQ to objects and LINQ to entites should be enough to discourage it. These mock contexts and DbSets build an entirely new universe that's a source of bugs in itself. I've decided to do integrations test only when and wherever EF is involved in my code. A working end-to-end test gives me a solid feeling that things are OK. A unit test (faking EF) doesn't. (Others do, don't get me wrong).
But let's assume you'd still like to venture into mocking DbContext.Entry<T>. Too bad, impossible.
The method is not virtual
It returns a DbEntityEntry<T>, a class with an internal constructor, that is a wrapper around an InternalEntityEntry, which is an internal class. And, by the way, DbEntityEntry doesn't implement an interface.
So, to answer your question
is it possible to (...) have access to DbEntityEntry and DBPropertyEntry from the test double?
No, EF's mocking hooks are only very superficial, you'll never even come close to how EF really works.
Just abstract it. If you are working against an interface, when creating your own doubles, put the modified stuff in a seperate method. My interface and implementation (generated by EF, but I altered the template) look like this:
//------------------------------------------------------------------------------
// <auto-generated>
// This code was generated from a template.
//
// Manual changes to this file may cause unexpected behavior in your application.
// Manual changes to this file will be overwritten if the code is regenerated.
// </auto-generated>
//------------------------------------------------------------------------------
namespace Model
{
using System;
using System.Data.Entity;
using System.Data.Entity.Infrastructure;
public interface IOmt
{
DbSet<DatabaseOmtObjectWhatever> DatabaseOmtObjectWhatever { get; set; }
int SaveChanges();
void SetModified(object entity);
void SetAdded(object entity);
}
public partial class Omt : DbContext, IOmt
{
public Omt()
: base("name=Omt")
{
}
protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
throw new UnintentionalCodeFirstException();
}
public virtual DbSet<DatabaseOmtObjectWhatever> DatabaseOmtObjectWhatever { get; set; }
public void SetModified(object entity)
{
Entry(entity).State = EntityState.Modified;
}
public void SetAdded(object entity)
{
Entry(entity).State = EntityState.Added;
}
}
}

Looking for a Ninject scope that behaves like InRequestScope

On my service layer I have injected an UnitOfWork and 2 repositories in the constructor. The Unit of Work and repository have an instance of a DbContext I want to share between the two of them. How can I do that with Ninject ? Which scope should be considered ?
I am not in a web application so I can't use InRequestScope.
I try to do something similar... and I am using DI however, I need my UoW to be Disposed and created like this.
using (IUnitOfWork uow = new UnitOfWorkFactory.Create())
{
_testARepository.Insert(a);
_testBRepository.Insert(b);
uow.SaveChanges();
}
EDIT: I just want to be sure i understand… after look at https://github.com/ninject/ninject.extensions.namedscope/wiki/InNamedScope i though about my current console application architecture which actually use Ninject.
Lets say :
Class A is a Service layer class
Class B is an unit of work which take into parameter an interface (IContextFactory)
Class C is a repository which take into parameter an interface (IContextFactory)
The idea here is to be able to do context operations on 2 or more repository and using the unit of work to apply the changes.
Class D is a context factory (Entity Framework) which provide an instance (keep in a container) of the context which is shared between Class B et C (.. and would be for other repositories aswell).
The context factory keep the instance in his container so i don’t want to reuse this instance all the name since the context need to be disposed at the end of the service operaiton.. it is the main purpose of the InNamedScope actually ?
The solution would be but i am not sure at all i am doing it right, the services instance gonna be transcient which mean they actually never disposed ? :
Bind<IScsContextFactory>()
.To<ScsContextFactory>()
.InNamedScope("ServiceScope")
.WithConstructorArgument(
"connectionString",
ConfigurationUtility.GetConnectionString());
Bind<IUnitOfWork>().To<ScsUnitOfWork>();
Bind<IAccountRepository>().To<AccountRepository>();
Bind<IBlockedIpRepository>().To<BlockedIpRepository>();
Bind<IAccountService>().To<AccountService>().DefinesNamedScope("ServiceScope");
Bind<IBlockedIpService>().To<BlockedIpService>().DefinesNamedScope("ServiceScope");
UPDATE: This approach works against NuGet current, but relies in an anomaly in the InCallscope implementation which has been fixed in the current Unstable NuGet packages. I'll be tweaking this answer in a few days to reflect the best approach after some mulling over. NB the high level way of structuring stuff will stay pretty much identical, just the exact details of the Bind<DbContext>() scoping will work. (Hint: CreateNamedScope in unstable would work or one could set up the Command Handler as DefinesNamedScope. Reason I dont just do that is that I want to have something that composes/plays well with InRequestScope)
I highly recommend reading the Ninject.Extensions.NamedScope integration tests (seriously, find them and read and re-read them)
The DbContext is a Unit Of Work so no further wrapping is necessary.
As you want to be able to have multiple 'requests' in flight and want to have a single Unit of Work shared between them, you need to:
Bind<DbContext>()
.ToMethod( ctx =>
new DbContext(
connectionStringName: ConfigurationUtility.GetConnectionString() ))
.InCallScope();
The InCallScope() means that:
for a given object graph composed for a single kernel.Get() Call (hence In Call Scope), everyone that requires an DbContext will get the same instance.
the IDisposable.Dispose() will be called when a Kernel.Release() happens for the root object (or a Kernel.Components.Get<ICache>().Clear() happens for the root if it is not .InCallScope())
There should be no reason to use InNamedScope() and DefinesNamedScope(); You don't have long-lived objects you're trying to exclude from the default pooling / parenting / grouping.
If you do the above, you should be able to:
var command = kernel.Get<ICommand>();
try {
command.Execute();
} finally {
kernel.Components.Get<ICache>().Clear( command ); // Dispose of DbContext happens here
}
The Command implementation looks like:
class Command : ICommand {
readonly IAccountRepository _ar;
readonly IBlockedIpRepository _br;
readonly DbContext _ctx;
public Command(IAccountRepository ar, IBlockedIpRepository br, DbContext ctx){
_ar = ar;
_br = br;
_ctx = ctx;
}
void ICommand.Execute(){
_ar.Insert(a);
_br.Insert(b);
_ctx.saveChanges();
}
}
Note that in general, I avoid having an implicit Unit of Work in this way, and instead surface it's creation and Disposal. This makes a Command look like this:
class Command : ICommand {
readonly IAccountService _as;
readonly IBlockedIpService _bs;
readonly Func<DbContext> _createContext;
public Command(IAccountService #as, IBlockedIpServices bs, Func<DbContext> createContext){
_as = #as;
_bs = bs;
_createContext = createContext;
}
void ICommand.Execute(){
using(var ctx = _createContext()) {
_ar.InsertA(ctx);
_br.InsertB(ctx);
ctx.saveChanges();
}
}
This involves no usage of .InCallScope() on the Bind<DbContext>() (but does require the presence of Ninject.Extensions.Factory's FactoryModule to synthesize the Func<DbContext> from a straightforward Bind<DbContext>().
As discussed in the other answer, InCallScope is not a good approach to solving this problem.
For now I'm dumping some code that works against the latest NuGet Unstable / Include PreRelease / Instal-Package -Pre editions of Ninject.Web.Common without a clear explanation. I will translate this to an article in the Ninject.Extensions.NamedScope wiki at some stagehave started to write a walkthrough of this technique in the Ninject.Extensions.NamedScope wiki's CreateNamedScope/GetScope article.
Possibly some bits will become Pull Request(s) at some stage too (Hat tip to #Remo Gloor who supplied me the outline code). The associated tests and learning tests are in this gist for now), pending packaging in a proper released format TBD.
The exec summary is you Load the Module below into your Kernel and use .InRequestScope() on everything you want created / Disposed per handler invocation and then feed requests through via IHandlerComposer.ComposeCallDispose.
If you use the following Module:
public class Module : NinjectModule
{
public override void Load()
{
Bind<IHandlerComposer>().To<NinjectRequestScopedHandlerComposer>();
// Wire it up so InRequestScope will work for Handler scopes
Bind<INinjectRequestHandlerScopeFactory>().To<NinjectRequestHandlerScopeFactory>();
NinjectRequestHandlerScopeFactory.NinjectHttpApplicationPlugin.RegisterIn( Kernel );
}
}
Which wires in a Factory[1] and NinjectHttpApplicationPlugin that exposes:
public interface INinjectRequestHandlerScopeFactory
{
NamedScope CreateRequestHandlerScope();
}
Then you can use this Composer to Run a Request InRequestScope():
public interface IHandlerComposer
{
void ComposeCallDispose( Type type, Action<object> callback );
}
Implemented as:
class NinjectRequestScopedHandlerComposer : IHandlerComposer
{
readonly INinjectRequestHandlerScopeFactory _requestHandlerScopeFactory;
public NinjectRequestScopedHandlerComposer( INinjectRequestHandlerScopeFactory requestHandlerScopeFactory )
{
_requestHandlerScopeFactory = requestHandlerScopeFactory;
}
void IHandlerComposer.ComposeCallDispose( Type handlerType, Action<object> callback )
{
using ( var resolutionRoot = _requestHandlerScopeFactory.CreateRequestHandlerScope() )
foreach ( object handler in resolutionRoot.GetAll( handlerType ) )
callback( handler );
}
}
The Ninject Infrastructure stuff:
class NinjectRequestHandlerScopeFactory : INinjectRequestHandlerScopeFactory
{
internal const string ScopeName = "Handler";
readonly IKernel _kernel;
public NinjectRequestHandlerScopeFactory( IKernel kernel )
{
_kernel = kernel;
}
NamedScope INinjectRequestHandlerScopeFactory.CreateRequestHandlerScope()
{
return _kernel.CreateNamedScope( ScopeName );
}
/// <summary>
/// When plugged in as a Ninject Kernel Component via <c>RegisterIn(IKernel)</c>, makes the Named Scope generated during IHandlerFactory.RunAndDispose available for use via the Ninject.Web.Common's <c>.InRequestScope()</c> Binding extension.
/// </summary>
public class NinjectHttpApplicationPlugin : NinjectComponent, INinjectHttpApplicationPlugin
{
readonly IKernel kernel;
public static void RegisterIn( IKernel kernel )
{
kernel.Components.Add<INinjectHttpApplicationPlugin, NinjectHttpApplicationPlugin>();
}
public NinjectHttpApplicationPlugin( IKernel kernel )
{
this.kernel = kernel;
}
object INinjectHttpApplicationPlugin.GetRequestScope( IContext context )
{
// TODO PR for TrgGetScope
try
{
return NamedScopeExtensionMethods.GetScope( context, ScopeName );
}
catch ( UnknownScopeException )
{
return null;
}
}
void INinjectHttpApplicationPlugin.Start()
{
}
void INinjectHttpApplicationPlugin.Stop()
{
}
}
}