SQL vs XML data storage solution - sql

(postgre/my)sql/php/html/css/javascript vs xml/xsl/xsd/php/css/javascript
Trying to decide whether to go with an xml-document-based app or with SQl. Each xml document would be about 30k; say 2000 files. Essentially a choice between serving up html/javascript, or serving a 30k xml file (plus xsl/xsd/javascript). Involves some financial (ie non-floating.point) math, plus substantial data entry one day per week.
SQL-solution would invove fragmenting/reassembling data using, say, ten separate cross-referenced tables, and tie users into SQL access control systems.
Assuming xml-based solution really is more straightforward to install/maintain, and using money=cents-as-integers is okay, and "other things are equal", my questions are:
1) Is it really a good plan to have the server read/update/save a 30k xml files, say 2000 times over 8 hours once a week, every time data is updated? Or is that just a trivial load?
(so that depends what else the server is doing I guess, and how fast the internet connection is)
2) How would that scale compared to an SQL-based solution? What would be the limiting factor?
3) Most importantly: what am I overlooking?

1) Not a good plan. Even if the load is not a problem you are basically building yourself a database when the problem is a solved one.
2) SQL is going to scale better base don what you've told.
3) NoSQL or XML based DB solutions like BaseX.

You want to look at your solution architecture... Where are the XML files coming from and how do you get hold of them. You also need to look at the navigation you are looking for. How do users navigate to one specific XML file - these navigational data need to be available. So to answer your question:
It is not a plan at all :-) - is is a tiny fragment of your solution, the load doesn't look big. You need to have a look at your meta data.
It might not be an OR question. All SQL systems know XML column data types today: PrgressQL, MS-SQL, Oracle, IBM DB/2 (including the free community edition). I like DB/2 (probably because I work for IBM :-) )
CouchDB, MongoDB -> JSON stores, XML databases as Karl suggested. Most important: caching, caching, caching! If you build in Java, use the guava libraries for a cache - once a file is transformed to the stuff you send down to the browser (using XSLT), cache that with generous expiry and have your load routine invalidate the cache
Hope that helps!

Related

Picking the right database technique for file storage and search

for a personal project I am searching for the "most suitable" database engine to hit the following key issues
need to store large amounts of single different document files (PDF)
need to perform full-text search onto PDF (for this I plan to use OCR and save the processed data/metadata additionally to the database)
need to get pieces/chunks of the saved documents (for example from a specific year) and show a preview of lots of them within a nice web UI
as much performance as possible
Up to now I did work a lot with SQL (MySql) and have some theoretical knowledge about other systems (MemCached, Redis, PostgreSQ, MongoDb). But I`ve never used them in combination and never hit the point WHEN they should be used for WHAT exactly or how they can be combined.
I think especially for a project like this it`s very important to select the right engine from beginning not to hit performance issues later.
So especially to all experienced developers out there, what would be your favourite choiche for this kind of (I gues SQL may not be the only right solution) ?
Or at the end will it be better to store files within filesystem and keep only metadata in database ?
BTW my planned API backend for this is Laravel 7+, frontend will be Vue 2+.
Thank you very much !

Migrating RMS to RDB

We're approaching the migration of legacy OpenVMS RMS files into relational database (both MS SQL 2012 and Oracle 10g are available).
I wonder if there are:
Tools to retrieve schema of indexed files
Tools to parse indexed files
Tools to deal with custom RMS data formats (zoned decimals etc)
as a bundle/API/Library
Perhaps I should change the approach?
There are several tools available, notably through ODBC vendors (I work for one: Attunity).
1 >> Tools to retrieve schema of indexed files
Please clarify. Looking for just record/column layout and indexes within the files or also relationships between files.
1a) How are the files currently being used? Cobol, Basic, Fortran programs? Datatrieve?
They will be using some data definition method, so you want a tool which can exploit that.
Connx, and Attunity Connect can 'import' CDD definitions, BASIC - MAP files, Cobol Copybooks. Variants are typically covered as well. I have written many a (perl/awk) script to convert special definition to XML.
1b ) Analyze/RMS, or a program with calling RMS XAB's can get available index information. Atunity connect will know how to map those onto the fields from 1a)
1c ) There is no formal, stored, relationship between (indexed) files on OpenVMS. That's all in the program logic. However, some modestly smart Perl/Awk/DCL script can often generate a tablem of likely foreign/primary keys by looking at filed names and datatypes matches.
How many files / layouts / gigabytes are we talking about?
2 >> Tools to parse indexed files
Please clarify? Once the structure is known (question 1), the parsing is done by reading using that structure right? You never ever want to understand the indexed file internals. Just tell RMS to fetch records.
3 >> Tools to deal with custom RMS data formats (zoned decimals etc) as a bundle/API/Library
Again, please clarify. Once the structure is known just use the 'right' tool to read using that structure and surely it will honor the detailed data definitions.
(I know it is quite simple to write one yourself, just thought there would be something in the industry)
Famous last words... 'quite simple'. Entire companies have been build and thrive doing just that for general cases. I admit that for specific cases it can be relatively straightforward, but 'the devil is in the details'.
In the Attunity Connect case we have a UDT (User Defined data Type) to handle the 'odd' cases, often involving DATES. Dates in integers, in strings, as units since xxx are all available out of the box, but for example some have -1 meaning 'some high date' which needs some help to be stored in a DB.
All the databases have some bulk load tool (BCP, SQL$LOADER).
As long as you can deliver data conforming to what those expect (tabular, comma-seperated, quoted-or-not, escapes-or-not) you should be in good shape.
The EGH tool Vselect may be a handy, and high performance, way to bulk read indexed files, filter and format some and spit out sequential files for the DB loaders. It can read RMS indexed file faster than RMS can! (It has its own metadata language though!)
Attunity offers full access and replication services.
They include a CDC (change data capture) to not a only load the data, but to also keep it up to date in near-real-time. That's useful for 'evolution' versus 'revolution'.
Check out Attunity 'Replicate'. Once you have a data dictionary, just point to the tables desired (include, exlude filters), point to a target DB and click to replicate. Of course there are options for (global or per-table) transformations (like an AREA-CODE+EXHANGE+NUMBER to single phone number, or adding a modified date columns ).
Will this be a single big switch conversion, or is there desire to migrate the data and keep the old systems alive for days, months, years perhaps, all along keeping the data in close sync?
Hope this helps some,
Hein van den Heuvel.
OP: Perhaps I should change the approach? Probably.
You might consider finding data migration vendors, some which likely have off-the-shelf solutions, if not as a COTS tool, more likely packaged as a service (I don't think this is a big market).
What this won't help you with is what I think of as much bigger problem with the application code: who is going to change all the code that is making RMS calls, in the corresponding code that makes relational DB calls? How will the entity ("Joe Programmer", or some tool), know where the data migrated to, so that he can write the correct call? What are you doing to do about the fact that the data representation is like to change?
Ideally you'd like an automated migration tool, that will move the data itself (therefore knows that datalayouts and representation changes), and will make the code changes that correspond. You can look for these kind of vendors, too.

What database for crawler/scraper?

I am currently researching what database to use for a project I am working on. Hopefully you guys can give me some hints.
The project is an automated web crawler that checks websites as per a user's request, scrapes data under certain circumstances, and creates log files of what was done.
Requirements:
Only few tables with few columns; predefining columns is no problem
No overly complex associations between models
Huge amount of date & time based queries
Due to logging, database will grow rapidly and use up a lot of space
Should be able to scale over multiple servers
Fields contain mostly ids (int), strings (around 200-500 characters max), and unix timestamps
Two different types of servers will simultaneously read/write data directly to/from it:
One(/later more) rails app that takes user input and displays results upon request
One(/later more) Node.js server that functions as the executing crawler/scraper. It will have enough load to run continuously and make dozens of database queries every second.
I assume it will neither be a graph database (no complex associations), nor a memory based key/value store (too much data to hold in cached). I'm still on the fence for every other type of database I could find, each seems to have it's merits.
So, any advice from the pros how I should decide?
Thanks.
I would agree with Vladimir that you would want to consider a document-based database for this scenario. I am most familiar with MongoDB. My reasons for using it here are as follows:
Your 'schema requirements' of "only a few tables with few columns" fits well with the NoSQL nature of MongoDB.
Same as above for "no overly complex associations between nodes" -- you will want to decide whether you'd prefer nested documents or using dbref (I prefer the former)
Huge amount of time-based data (and other scaling requirements) - MongoDB scales well via sharding or partitioning
Read/write access - this is why I am recommending MongoDB over something like Hadoop. The interactive query requirement is best met by something other than a Hadoop-style store, as this type of storage is designed for batch (rather than interactive query) requirements.
Google built a database called "BigTable" for crawling, indexing and the search related business. They released a paper about it (google for "BigTable" if you're interested). There are several open source implementations for bigtable-like designs, one of them is Hypertable. We have a blog posting describing a crawler/indexer implementation (http://hypertable.com/blog/sehrchcom_a_structured_search_engine_powered_by_hypertable/) written by the guys from sehrch.com. And looking at your requirements: all of them are supported and are common use cases.
(disclaimer: i work for hypertable.)
Take a look at document-oriented database like a CouchDB or MongoDB.

Implementing a massive search application

We have an email service that hosts close to 10000 domains such that we store the headers of messages in a SQL Server database.
I need to implement an application that will search the message body for keywords. The messages are stored as files on a NAS storage system.
As a proof of concept, I had implemented a SQL server based search system were I would parse the message and store all the words in a database table along with the memberid and the messageid. The database was on a separate server to the headers database.
The problem with that system was that I ended up with a table with 600 million rows after processing messages on just one domain. Obviously this is not a very scalable solution.
Since the headers are stored in a SQL Server table, I am going to need to join the messageIDs from the search application to the header table to display the messages that contain the searched for keywords.
Any suggestions on a better architecture? Any better alternative to using SQL server? We receive over 20 million messages a day.
We are a small company with limited resources with respect to servers, maintenance etc.
Thanks
have a look at Hadoop. It's complete "map-reduce" framework for working with huge datasets inspired by Google. It think (but I could be wrong) Rackspace is using it for email search for their clients.
lucene.net will help you a lot, but no matter how you approach this, it's going to be a lot of work.
Consider not using SQL for this. It isn't helping.
GREP and other flat-file techniques for searching the text of the headers is MUCH faster and much simpler.
You can also check out the java lucene stuff which might be useful to you. Both Katta which is a distributed lucene index and Solr which can use rsync for index syncing might be useful. While I don't consider either to be very elegant it is often better to use something that is already built and known to work before embarking on actual development. Without knowing more details its hard to make a more specific recommendation.
If you can break up your 600 million rows, look into database sharding. Any query across all rows is going to be slow. At very least you could break up by language. If they're all English, well, find some way to split the data that makes sense based on common searches. I'm just guessing here but maybe domains could be grouped by TLD (.com, .net, .org, etc).
For fulltext search, compare SQL Server vs Lucene.NET vs cLucene vs MySQL vs PostgreSQL. Note full-text search will be faster if you don't need to rank the results. If a database is still slow look into performance tuning and if that fails look into a Linux-based db.
http://incubator.apache.org/lucene.net/
http://sourceforge.net/projects/clucene/
i wonder if BigTable (http://en.wikipedia.org/wiki/BigTable) does searching.
Look into the SQL Server full text search services/functionality. I haven't used it myself, but I once read that Stack Overflow uses it.
three solutions:
Use an already-existant text search engine (lucene is the most mentioned, there are several more)
Store the whole message in the SQL database, and use included full text search (most DBs have it these days).
Don't create a new record for each word occurrence, just add a new value to a big field in the word record. Even better if you don't use SQL for this table, use a key-value store where the key is the word and the value is the list of occurrences. Check some Inverted Index bibliography for inspiration
but to be honest, i think the only reasonable approach is #1

Good reasons NOT to use a relational database?

Can you please point to alternative data storage tools and give good reasons to use them instead of good-old relational databases? In my opinion, most applications rarely use the full power of SQL--it would be interesting to see how to build an SQL-free application.
Plain text files in a filesystem
Very simple to create and edit
Easy for users to manipulate with simple tools (i.e. text editors, grep etc)
Efficient storage of binary documents
XML or JSON files on disk
As above, but with a bit more ability to validate the structure.
Spreadsheet / CSV file
Very easy model for business users to understand
Subversion (or similar disk based version control system)
Very good support for versioning of data
Berkeley DB (Basically, a disk based hashtable)
Very simple conceptually (just un-typed key/value)
Quite fast
No administration overhead
Supports transactions I believe
Amazon's Simple DB
Much like Berkeley DB I believe, but hosted
Google's App Engine Datastore
Hosted and highly scalable
Per document key-value storage (i.e. flexible data model)
CouchDB
Document focus
Simple storage of semi-structured / document based data
Native language collections (stored in memory or serialised on disk)
Very tight language integration
Custom (hand-written) storage engine
Potentially very high performance in required uses cases
I can't claim to know anything much about them, but you might also like to look into object database systems.
Matt Sheppard's answer is great (mod up), but I would take account these factors when thinking about a spindle:
Structure : does it obviously break into pieces, or are you making tradeoffs?
Usage : how will the data be analyzed/retrieved/grokked?
Lifetime : how long is the data useful?
Size : how much data is there?
One particular advantage of CSV files over RDBMSes is that they can be easy to condense and move around to practically any other machine. We do large data transfers, and everything's simple enough we just use one big CSV file, and easy to script using tools like rsync. To reduce repetition on big CSV files, you could use something like YAML. I'm not sure I'd store anything like JSON or XML, unless you had significant relationship requirements.
As far as not-mentioned alternatives, don't discount Hadoop, which is an open source implementation of MapReduce. This should work well if you have a TON of loosely structured data that needs to be analyzed, and you want to be in a scenario where you can just add 10 more machines to handle data processing.
For example, I started trying to analyze performance that was essentially all timing numbers of different functions logged across around 20 machines. After trying to stick everything in a RDBMS, I realized that I really don't need to query the data again once I've aggregated it. And, it's only useful in it's aggregated format to me. So, I keep the log files around, compressed, and then leave the aggregated data in a DB.
Note I'm more used to thinking with "big" sizes.
The filesystem's prety handy for storing binary data, which never works amazingly well in relational databases.
Try Prevayler:
http://www.prevayler.org/wiki/
Prevayler is alternative to RDBMS. In the site have more info.
If you don't need ACID, you probably don't need the overhead of an RDBMS. So, determine whether you need that first. Most of the non-RDBMS answers provided here do not provide ACID.
Custom (hand-written) storage engine / Potentially very high performance in required uses cases
http://www.hdfgroup.org/
If you have enormous data sets, instead of rolling your own, you might use HDF, the Hierarchical Data Format.
http://en.wikipedia.org/wiki/Hierarchical_Data_Format:
HDF supports several different data models, including multidimensional arrays, raster images, and tables.
It's also hierarchical like a file system, but the data is stored in one magic binary file.
HDF5 is a suite that makes possible the management of extremely large and complex data collections.
Think petabytes of NASA/JPL remote sensing data.
G'day,
One case that I can think of is when the data you are modelling cannot be easily represented in a relational database.
Once such example is the database used by mobile phone operators to monitor and control base stations for mobile telephone networks.
I almost all of these cases, an OO DB is used, either a commercial product or a self-rolled system that allows heirarchies of objects.
I've worked on a 3G monitoring application for a large company who will remain nameless, but whose logo is a red wine stain (-: , and they used such an OO DB to keep track of all the various attributes for individual cells within the network.
Interrogation of such DBs is done using proprietary techniques that are, usually, completely free from SQL.
HTH.
cheers,
Rob
Object databases are not relational databases. They can be really handy if you just want to stuff some objects in a database. They also support versioning and modify classes for objects that already exist in the database. db4o is the first one that comes to mind.
In some cases (financial market data and process control for example) you might need to use a real-time database rather than a RDBMS. See wiki link
There was a RAD tool called JADE written a few years ago that has a built-in OODBMS. Earlier incarnations of the DB engine also supported Digitalk Smalltalk. If you want to sample application building using a non-RDBMS paradigm this might be a start.
Other OODBMS products include Objectivity, GemStone (You will need to get VisualWorks Smalltalk to run the Smalltalk version but there is also a java version). There were also some open-source research projects in this space - EXODUS and its descendent SHORE come to mind.
Sadly, the concept seemed to die a death, probably due to the lack of a clearly visible standard and relatively poor ad-hoc query capability relative to SQL-based RDMBS systems.
An OODBMS is most suitable for applications with core data structures that are best represented as a graph of interconnected nodes. I used to say that the quintessential OODBMS application was a Multi-User Dungeon (MUD) where rooms would contain players' avatars and other objects.
You can go a long way just using files stored in the file system. RDBMSs are getting better at handling blobs, but this can be a natural way to handle image data and the like, particularly if the queries are simple (enumerating and selecting individual items.)
Other things that don't fit very well in a RDBMS are hierarchical data structures and I'm guessing geospatial data and 3D models aren't that easy to work with either.
Services like Amazon S3 provide simpler storage models (key->value) that don't support SQL. Scalability is the key there.
Excel files can be useful too, particularly if users need to be able to manipulate the data in a familiar environment and building a full application to do that isn't feasible.
There are a large number of ways to store data - even "relational databse" covers a range of alternatives from a simple library of code that manipulates a local file (or files) as if it were a relational database on a single user basis, through file based systems than can handle multiple-users to a generous selection of serious "server" based systems.
We use XML files a lot - you get well structured data, nice tools for querying same the ability to do edits if appropriate, something that's human readable and you don't then have to worry about the db engine working (or the workings of the db engine). This works well for stuff that's essentially read only (in our case more often than not generated from a db elsewhere) and also for single user systems where you can just load the data in and save it out as required - but you're creating opportunities for problems if you want multi-user editing - at least of a single file.
For us that's about it - we're either going to use something that will do SQL (MS offer a set of tools that run from a .DLL to do single user stuff all the way through to enterprise server and they all speak the same SQL (with limitations at the lower end)) or we're going to use XML as a format because (for us) the verbosity is seldom an issue.
We don't currently have to manipulate binary data in our apps so that question doesn't arise.
Murph
One might want to consider the use of an LDAP server in the place of a traditional SQL database if the application data is heavily key/value oriented and hierarchical in nature.
BTree files are often much faster than relational databases. SQLite contains within it a BTree library which is in the public domain (as in genuinely 'public domain', not using the term loosely).
Frankly though, if I wanted a multi-user system I would need a lot of persuading not to use a decent server relational database.
Full-text databases, which can be queried with proximity operators such as "within 10 words of," etc.
Relational databases are an ideal business tool for many purposes - easy enough to understand and design, fast enough, adequate even when they aren't designed and optimized by a genius who could "use the full power," etc.
But some business purposes require full-text indexing, which relational engines either don't provide or tack on as an afterthought. In particular, the legal and medical fields have large swaths of unstructured text to store and wade through.
Also:
* Embedded scenarios - Where usually it is required to use something smaller then a full fledged RDBMS. Db4o is an ODB that can be easily used in such case.
* Rapid or proof-of-concept development - where you wish to focus on the business and not worry about persistence layer
CAP theorem explains it succinctly. SQL mainly provides "Strong Consistency: all clients see the same view, even in presence of updates".
K.I.S.S: Keep It Small and Simple
I would offer RDBMS :)
If you do not wont to have troubles with set up/administration go for SQLite.
Built in RDBMS with full SQL support. It even allows you to store any type of data in any column.
Main advantage against for example log file: If you have huge one, how are you going to search in it? With SQL engine you just create index and speed up operation dramatically.
About full text search: SQLite has modules for full text search too..
Just enjoy nice standard interface to your data :)
One good reason not to use a relational database would be when you have a massive data set and want to do massively parallel and distributed processing on the data. The Google web index would be a perfect example of such a case.
Hadoop also has an implementation of the Google File System called the Hadoop Distributed File System.
I would strongly recommend Lua as an alternative to SQLite-kind of data storage.
Because:
The language was designed as a data description language to begin with
The syntax is human readable (XML is not)
One can compile Lua chunks to binary, for added performance
This is the "native language collection" option of the accepted answer. If you're using C/C++ as the application level, it is perfectly reasonable to throw in the Lua engine (100kB of binary) just for the sake of reading configs/data or writing them out.