explain based on the knowledge of hardware why "Certain floating-point values cannot be exactly represented inside the computer’s memory"? - objective-c

In the second line of the program’s output, notice that the value of
331.79, which is assigned to floatingVar, is actually displayed as 331.790009.The reason for this inaccuracy is the particular way in which numbers are internally represented inside the computer.You
have probably come across the same type of inaccuracy when dealing
with numbers on your calculator. If you divide 1 by 3 on your
calculator, you get the result .33333333, with perhaps some additional
3s tacked on at the end.The string of 3s is the calculator’s
approximation to one third.Theoretically, there should be an infinite
number of 3s. But the calculator can hold only so many digits, thus
the inherent inaccuracy of the machine.The same type of inaccuracy
applies here: Certain floatingpoint values cannot be exactly
represented inside the computer’s memory.
the above quote comes from Programming in Objective-C – 4th edition
And this post answered a little part but not the kind of answer i'm trying to look for.
Will try to find another book about this later in the day.
Anyway if anyone would like to answer this question, thanks!

Related

Oracle String Conversion - Alpha String to Numeric Score, Fuzzy Match

I'm working with a lot of name data where the following events are happening:
In one stream the data is submitted as "Sung" and in the other stream "Snug" my initial thought to this was to convert Sung and Snug to where each character equals a number then the sums would be the same, so even if they transverse a character, I'd be able to bucket these appropriately.
The other is where in one stream it comes in as "Lillly" as opposed to "Lilly" in the other stream. I'd like to figure out how to fuzzy match these such that I can identify them. I'm not sure if this is possible in Oracle.
I'm working with many millions of data points and trying to figure out how to write these classification buckets such that I can stop having so much noise in my primary task of finding where people are truly different people as opposed to a clerical error.
Any thoughts would be very appreciated.
A common measure for such distance is called Levenshtein distance (Wikipedia here). This measures the "edit" distance between two strings -- number of edit operations needed to convert one into the other.
That's the good news. More good news is that Oracle even has an implementation in the UTL_MATCH library.
The bad news is that it is really, really expensive on millions of data points. Unfortunately, I cannot help you there so much. One idea is to determine which names are "close enough" because they already share a certain minimum number of characters.
Another method is to convert the strings to what they sound like. That is called soundex. You may be able to use the two together -- assuming your names are predominantly English (the soundex algorithm was invented by the US Census Bureau, so it would work best on names in America).

Neural Network Input and Output Data formatting

and thanks for reading my thread.
I have read some of the previous posts on formatting/normalising input data for a Neural Network, but cannot find something that addresses my queries specifically. I apologise for the long post.
I am attempting to build a radial basis function network for analysing horse racing data. I realise that this has been done before, but the data that I have is "special" and I have a keen interest in racing/sportsbetting/programming so would like to give it a shot!
Whilst I think I understand the principles for the RBFN itself, I am having some trouble understanding the normalisation/formatting/scaling of the input data so that it is presented in a "sensible manner" for the network, and I am not sure how I should formulate the output target values.
For example, in my data I look at the "Class change", which compares the class of race that the horse is running in now compared to the race before, and can have a value between -5 and +5. I expect that I need to rescale these to between -1 and +1 (right?!), but I have noticed that many more runners have a class change of 1, 0 or -1 than any other value, so I am worried about "over-representation". It is not possible to gather more data for the higher/lower class changes because thats just 'the way the data comes'. Would it be best to use the data as-is after scaling, or should I trim extreme values, or something else?
Similarly, there are "continuous" inputs - like the "Days Since Last Run". It can have a value between 1 and about 1000, but values in the range of 10-40 vastly dominate. I was going to scale these values to be between 0 and 1, but even if I trim the most extreme values before scaling, I am still going to have a huge representation of a certain range - is this going to cause me an issue? How are problems like this usually dealt with?
Finally, I am having trouble understanding how to present the "target" values for training to the network. My existing results data has the "win/lose" (0 or 1?) and the odds at which the runner won or lost. If I just use the "win/lose", it treats all wins and loses the same when really they're not - I would be quite happy with a network that ignored all the small winners but was highly profitable from picking 10-1 shots. Similarly, a network could be forgiven for "losing" on a 20-1 shot but losing a bet at 2/5 would be a bad loss. I considered making the results (+1 * odds) for a winner and (-1 / odds) for a loser to capture the issue above, but this will mean that my results are not a continuous function as there will be a "discontinuity" between short price winners and short price losers.
Should I have two outputs to cover this - one for bet/no bet, and another for "stake"?
I am sorry for the flood of questions and the long post, but this would really help me set off on the right track.
Thank you for any help anyone can offer me!
Kind regards,
Paul
The documentation that came with your RBFN is a good starting point to answer some of these questions.
Trimming data aka "clamping" or "winsorizing" is something I use for similar data. For example "days since last run" for a horse could be anything from just one day to several years but tends to centre in the region of 20 to 30 days. Some experts use a figure of say 63 days to indicate a "spell" so you could have an indicator variable like "> 63 =1 else 0" for example. One clue is to look at outliers say the upper or lower 5% of any variable and clamp these.
If you use odds/dividends anywhere make sure you use the probabilities ie 1/(odds+1) and a useful idea is to normalize these to 100%.
The odds or parimutual prices tend to swamp other predictors so one technique is to develop separate models, one for the market variables (the market model) and another for the non-market variables (often called the "fundamental" model).

Excel 2007 VBA Calculations Wrong

When you run a VBA macro that performs numeric calculations which result in a decimal value, the result that is returned may be incorrect.
Here are a couple of examples:
Dim me_wrong as Double
me_wrong = 1000 - 999.59
RESULT = 0.409999999999968
Dim me_wrong_too as Double
me_wrong_too = 301.84 - 301
RESULT = 0.839999999999975
I have never ever noticed this before. What on earth is going on???
I have seen the following article about Office 97 but can't find anything about a bug in Excel 2007:
http://support.microsoft.com/default.aspx?scid=kb;en-us;165373
Plus it doesn't explain why I have never seen it before.
Please help!
The explanation for the problem from Office 97 and VBA is equally applicable going forward into Excel 2007. The core VBA system is largely unchanged despite the migration into later versions, hence the same kinds of accuracy gremlins that plague older VBA macros will persist.
The fundamental problem lies with the inherent inaccuracy in the representation of fractional numbers in binary, and how at least some effort to mitigate that inaccuracy was made with IEEE floating point representations. There is a very decent treatment of the subject of IEEE representation at this location.
*Edit: Just a minor bit of extra info for detail. *
For a very simple example that illustrates this issue in a trivial case, consider a situation in which decimals are represented as sums of inverse powers of two, eg 2-1, 2-2, 2-3, and so on. That ends up looking like .5, .25, .125, and so on. If you're representing exactly those numbers, all is good. However, consider a number like .761; 2-1+2-2 gets you to .750, but now you need .011. 2-3 (.125) is too big, but 2-4 (.0625) is too small...so you keep going to smaller powers of two, realizing you'll never quite represent the number precisely.
The choice becomes where you stop resolving and accept the inherent inaccuracy as being "good enough" for the problem you're solving/modeling.
It is, unfortunately, not a bug.
Double representation follows a fixed point notation, where the mantissa is a number "1,x" with "1" being implicit. There's an exponent and a sign, which makes the full representation in Base 2.
The pertinent issue is Base=2 which makes "x" in "1,x" to be a finite-precision (53bits of it) fractional binary. Think x= a52*1/2+a51*1/4+a50*1/8+...+a*1**1/(2^52)+a0*1/(2^53), where a< i > are the bits in the mantissa.
Try attaining 1,4 with this representation, and you hit the precision wall... there is no finite decomposition of 0.4 in binary weights. So the norm specifies you should represent the number immediately before the real one, which leaves you with 0,39999..9997346 (or whatever the tail is).
The "good" news is, and I've just burned four "c" coding days last week on that subject, you can do without Doubles if you represent your number using a very small scale (say 10^-9), store then in very large variables (long64), and do your display functions using nothing but integers (mathematically slicing away integral and fractional parts through integer division and their remainders). A treat, I tell you... not.

precision gains where data move from one table to another in sql server

There are three tables in our sql server 2008
transact_orders
transact_shipments
transact_child_orders.
Three of them have a common column carrying_cost. Data type is same in all the three tables.It is float with NUMERIC_PRECISION 53 and NUMERIC_PRECISION_RADIX 2.
In table 1 - transact_orders this column has value 5.1 for three rows. convert(decimal(20,15), carrying_cost) returns 5.100000..... here.
Table 2 - transact_shipments three rows are fetching carrying_cost from those three rows in transact_orders.
convert(decimal(20,15), carrying_cost) returns 5.100000..... here also.
Table 3 - transact_child_orders is summing up those three carrying costs from transact_shipments. And the value shown there is 15.3 when I run a normal select.
But convert(decimal(20,15), carrying_cost) returns 15.299999999999999 in this stable. And its showing that precision gained value in ui also. Though ui is only fetching the value, not doing any conversion. In the java code the variable which is fetching the value from the db is defined as double.
The code in step 3, to sum up the three carrying_costs is simple ::
...sum(isnull(transact_shipments.carrying_costs,0)) sum_carrying_costs,...
Any idea why this change occurs in the third step ? Any help will be appreciated. Please let me know if any more information is needed.
Rather than post a bunch of comments, I'll write an answer.
Floats are not suitable for precise values where you can't accept rounding errors - For example, finance.
Floats can scale from very small numbers, to very high numbers. But they don't do that without losing a degree of accuracy. You can look the details up on line, there is a host of good work out there for you to read.
But, simplistically, it's because they're true binary numbers - some decimal numbers just can't be represented as a binary value with 100% accuracy. (Just like 1/3 can't be represented with 100% accuracy in decimal.)
I'm not sure what is causing your performance issue with the DECIMAL data type, often it's because there is some implicit conversion going on. (You've got a float somewhere, or decimals with different definitions, etc.)
But regardless of the cause; nothing is faster than integer arithmetic. So, store your values are integers? £1.10 could be stored as 110p. Or, if you know you'll get some fractions of a pence for some reason, 11000dp (deci-pennies).
You do then need to consider the biggest value you will ever reach, and whether INT or BIGINT is more appropriate.
Also, when working with integers, be careful of divisions. If you divide £10 between 3 people, where does the last 1p need to go? £3.33 for two people and £3.34 for one person? £0.01 eaten by the bank? But, invariably, it should not get lost to the digital elves.
And, obviously, when presenting the number to a user, you then need to manipulate it back to £ rather than dp; but you need to do that often anyway, to get £10k or £10M, etc.
Whatever you do, and if you don't want rounding errors due to floating point values, don't use FLOAT.
(There is ALOT written on line about how to use floats, and more importantly, how not to. It's a big topic; just don't fall into the trap of "it's so accurate, it's amazing, it can do anything" - I can't count the number of time people have screwed up data using that unfortunately common but naive assumption.)

Storage algorithm question - verify sequential data with little memory

I found this on an "interview questions" site and have been pondering it for a couple of days. I will keep churning, but am interested what you guys think
"10 Gbytes of 32-bit numbers on a magnetic tape, all there from 0 to 10G in random order. You have 64 32 bit words of memory available: design an algorithm to check that each number from 0 to 10G occurs once and only once on the tape, with minimum passes of the tape by a read head connected to your algorithm."
32-bit numbers can take 4G = 2^32 different values. There are 2.5*2^32 numbers on tape total. So after 2^32 count one of numbers will repeat 100%. If there were <= 2^32 numbers on tape then it was possible that there are two different cases – when all numbers are different or when at least one repeats.
It's a trick question, as Michael Anderson and I have figured out. You can't store 10G 32b numbers on a 10G tape. The interviewer (a) is messing with you and (b) is trying to find out how much you think about a problem before you start solving it.
The utterly naive algorithm, which takes as many passes as there are numbers to check, would be to walk through and verify that the lowest number is there. Then do it again checking that the next lowest is there. And so on.
This requires one word of storage to keep track of where you are - you could cut down the number of passes by a factor of 64 by using all 64 words to keep track of where you're up to in several different locations in the search space - checking all of your current ones on each pass. Still O(n) passes, of course.
You could probably cut it down even more by using portions of the words - given that your search space for each segment is smaller, you won't need to keep track of the full 32-bit range.
Perform an in-place mergesort or quicksort, using tape for storage? Then iterate through the numbers in sequence, tracking to see that each number = previous+1.
Requires cleverly implemented sort, and is fairly slow, but achieves the goal I believe.
Edit: oh bugger, it's never specified you can write.
Here's a second approach: scan through trying to build up to 30-ish ranges of contiginous numbers. IE 1,2,3,4,5 would be one range, 8,9,10,11,12 would be another, etc. If ranges overlap with existing, then they are merged. I think you only need to make a limited number of passes to either get the complete range or prove there are gaps... much less than just scanning through in blocks of a couple thousand to see if all digits are present.
It'll take me a bit to prove or disprove the limits for this though.
Do 2 reduces on the numbers, a sum and a bitwise XOR.
The sum should be (10G + 1) * 10G / 2
The XOR should be ... something
It looks like there is a catch in the question that no one has talked about so far; the interviewer has only asked the interviewee to write a program that CHECKS
(i) if each number that makes up the 10G is present once and only once--- what should the interviewee do if the numbers in the given list are present multple times? should he assume that he should stop execting the programme and throw exception or should he assume that he should correct the mistake by removing the repeating number and replace it with another (this may actually be a costly excercise as this involves complete reshuffle of the number set)? correcting this is required to perform the second step in the question, i.e. to verify that the data is stored in the best possible way that it requires least possible passes.
(ii) When the interviewee was asked to only check if the 10G weight data set of numbers are stored in such a way that they require least paases to access any of those numbers;
what should the interviewee do? should he stop and throw exception the moment he finds an issue in the algorithm they were stored in, or correct the mistake and continue till all the elements are sorted in the order of least possible passes?
If the intension of the interviewer is to ask the interviewee to write an algorithm that finds the best combinaton of numbers that can be stored in 10GB, given 64 32 Bit registers; and also to write an algorithm to save these chosen set of numbers in the best possible way that require least number of passes to access each; he should have asked this directly, woudn't he?
I suppose the intension of the interviewer may be to only see how the interviewee is approaching the problem rather than to actually extract a working solution from the interviewee; wold any buy this notion?
Regards,
Samba