What's a good place to put your module #imports? - objective-c

So I am using the new #import module syntax introduced with the latest Xcode - I still wonder where the best place is to put them. Before, I would place library imports and very important categories in the .pch file, but now that's not necessary anymore (at least not for the native frameworks). My first idea was to create a modules.h file and do all the imports there, then include that modules.h file in the AppDelegate - but this doesn't seem right. Also, importing in the first place you need it doesn't make sense either, since you might use it in different places.
This is in fact a question about "best practices" which is - of course - a little subjective. But I think this affects a lot of people and the overall project structure. So please share your solution to this.

it sounds like you weren't doing it the best way before, In general you want as few symbols available at any one time. For a few different reasons:
less likely to make a mistake with symbols that have the same name but different values, or types... and for reasons that the compiler has to import less crap into each compilation unit.
I am not an expert on how #import has changed the compiler semantics of preprocessing and compiling, but I suspect you should still basically import things as close to the point that they will be used as possible.
I generally will not generally import any class's headers into another class's .h file.
in a .h I will forward declare any classes with #class SomeCLass and only include enough headers to satisfy the c/c++ types that I use as ivar/properties. The only exception to that being if I need to include a superclass's header or another .h for a protocol.
the rest of the includes go into the .m
I like to keep my pch pretty spartan, but if you have some utility categories or a widely used library you could include stuff in there, I tend not to... but in a smaller project you probably wont run into problems... you will run into indexing problems in projects with hundreds of source files, especially if you have some Objective-C++ units. That will end up hurting code completion and live syntax checking.

Related

Xcode and objective c shenanigans

Baby new to Xcode, Cocoa touch and iOS development in general. And am taking the Stanford walkthrough for their iPhone class. I am a little confused at a couple of places and need to shoot my doubts to you guys:
I have two classes that I have created for my model, essentially CalculatorBrain.m and CalculatorBrain.h.
From what I gather, in Objective C, creating a class essentially consists of two functions, one is to declare the class which contains the method/messages and other variables while the other is the actual implementation for the same. From this stems two questions:
Why must I declare a class without implementing it's methods at first? (the concept seems to be borrowed from interfaces) and only then move on to implementing it .
From the above question, as I go through the walkthrough, I notice that the class declaration took place in CalculatorBrain.h whereas the methods were actually implemented in CalculatorBrain.m. I am unable to grasp the nuances of why this was done so if anybody is willing to shed some light on this, it would really help
Thanks again,
Parijat Kalia!!!
These are traditions from the C world, and they're just common practice to avoid some problems. They aren't two classes, they are the definition (in the .h file) and the implementation (in the .c or .cc file).
If you defined the class in the .c file, you couldn't refer to it elsewhere because it wouldn't be defined. You could include your .c file, but then you'd have two copies of the code. You could also use the "extern" keyword, but at this point it's kind of odd.
If you put code in the .h file, then when it's included the code gets included. This means you can get compiler errors that you have three "getMyThing" functions.
This means you can give out your headers to others without giving away your top-secret implementation (useful for making libraries), include your header without worrying about the possible multiple definitions, etc. You can also add variables and functions in the .c file which people using the header (like your other code) can't see or use, so you don't have to worry about changing it later and having compilation break.

Can I create C functions that are only visible to my class which is broken into multiple files?

Using a static function, I can limit the linkage of my function to the file at hand and that is perfect in many cases. But I have a class that is unwieldy as one file, but breaking it up is made more frustrating because there are functions that I would like to keep 'private' but are needed throughout.
One part of the answer must be counter-questions, such as:
Why is your class so big that it must be split up?
Are you sure your class is so big that it must be split up? (How big is 'big'?)
Are you sure you have your class properly abstracted?
Can you make the common functions into a new class that can be used by the main class you are working with? That will hide the functions behind a class interface barrier.
On the whole, if you can avoid it, do not split the class file up arbitrarily because of size constraints; keep together that which belongs together.
A Gruesome Possibility
Assuming that a split is necessary and an orthodox split (into various classes that work together) is not possible, the question becomes: how gruesome will you accept your code being? (It's already a bit gruesome since there's an awful lot of functionality in a single file; can you stand it becoming more gruesome?)
Assume your class is in 4 (or more) files.
class.h
class.c
class1.c
class2.c
The header, class.h, is orthodox - self-contained and idempotent. It is used by the outside world (meaning outside this collection of source code) to access the facilities provided by the class.
The files class1.c and class2.c contain implementations of the functions in the class. They could be given a separate, distinctive file suffix - there might be some advantages to doing so. The files are not designed to be compiled standalone; they are strictly a convenience that splits the source up because the class got too big.
The file class.c is what you compile. It contains:
#include "class.h"
Other definitions needed by the class internals.
#include "class1.c"
#include "class2.c"
Thus, although the source is split up, you actually compile a single file, class.c.
In your makefile or equivalent, you specify that class.o depends on the header and all three source files; if any of those changes, then you need to recompile the whole lot. One advantage of changing the suffix of the implementation files (class1.c and class2.c) is that they will not compile separately because the suffix is not recognized by the C (Objective-C) compiler. One downside of changing the suffix is that your syntax-aware editor won't be aware of the correct syntax highlighting for the separate files unless you tell it the file type. If you use an IDE, it may also be less than amused at this trickery.
If you work on a machine where the size of the source means it cannot all be compiled at once like this, then you are snookered. This technique does not help at all; you have to split the files up and compile them separately. In that case, really look hard at whether you can split the code cleanly into several classes which can be managed in an orthodox way.
By request, my comment on the OP as an answer:
There's no language support for this that I'm aware of... You could put all the support functions in a separate c file and only #import its header from the class implementation files? If they don't have to be C functions (for passing as callbacks to C APIs, for example) I'd reimplement them as methods on the class and declare the private interface in a separate header—each implementation file would then #import both the "public" and "private" header.
Prefix their names with output of a cryptographic RNG. Now you don't have to worry about unintentional name collisions. Problem solved. You can hide the renaming in preprocessor macros if you really like.

Organize #import Statements for Objective-C/XCode

After several months of coding in Objective-C, I completely understand when I need an #import, how import statements cascade (ripple?), and when to use forwarding classes. I do not know how to aggregate imports to get them inside of <> instead of in quotes (although maybe that's just for frameworks)...
The problem is that I'm making a huge mess. I come from Java (and the heavy-handed IDE), so I just add imports as I see fit. Sometimes I add them to the interface, but since that's usually not necessary, I just add them to the top of the .m in question.
Today I started thinking: there must be some rules of thumb on how to organize this stuff. In fact, since Objective-C is a C superset, there are rules of thumb for everything, but I don't know them. How should I organize my imports? Particularly:
When should I import in the .m?
When should I import in the .h?
Should I create .h files just for the sake of importing them (i.e., header files that just have imports in them)? If so, any hints on organizing that?
This is just a general idea of what I'm trying to figure out.
The <....> syntax is indeed just for frameworks. That doesn't mean you shouldn't create a framework to contain the core logic of your application though. Often this is a useful thing to do if you:
a) Need to provide support for loadable bundles that want to invoke aspects of your application logic (the bundle links to the framework, so does your application)
b) Write multiple apps that share the same core logic
Your question is somewhat subjective and you will get developers who argues both ways, but a convention I follow is:
Never import class definitions in the .h file, unless you are subclassing it. Use forward #class directives for everything in the .h.
Only import class definitions into a .m as you find you need to use that class in the implementation.
Generally speaking, the .h does not need access to the class definition of its ivars, method arguments or return values. It only needs to know that they are classes, which is what #class allows you to do. It does need access to the class definition of anything you're subclassing, adding a category to, or (obviously) implementing a protocol for.
Forget about whether <...> is for frameworks or what. <...> checks the system header search path, while "..." checks the current dir in addition to. One thing to remember however, is that the <CoreFoo/CoreFoo.h> declaration is handled a little differently on the apple platform, but only as it relates to apple frameworks: CoreFoo.framework/Headers/CoreFoo.h is matched to CoreFoo/CoreFoo.h
When imports are inside <> instead of quotes, all this means is that you are importing something from a framework. In fact, when doing this, the import is typically in the style
#import <Foundation/Foundation.h>
The first Foundation, before the slash, is the name of the framework in question, and the second one is just a header file in that framework. That header file is just something like
#import <Foundation/NSObjCRuntime.h>
#import <Foundation/NSArray.h>
#import <Foundation/NSAutoreleasePool.h>
...
#import <Foundation/NSURLHandle.h>
including every file from that framework. You can do this too, and isn't a bad idea for components that need multiple imports (although in that scenario, you may want a separate public interface)
For the other stuff, following the rule of thumb that you want stuff to know about as little as possible, you only want to put the import in the header file if it's necessary (like for an ivar or superclass) but really it's a matter of taste.

Ability to specify more than one class declarations and definitions in objective-c interface and implementation sections respectively

I was just wondering if I have the option to specify more than one set of class declarations and definitions in the same file, without breaking it up into multiple files.
I'm guessing this is just the sign to break it up, but I was just wondering out of curiosity.
Also, bonus, when including, what is the difference between #include and #import.
Yes. The only really vital division is that a file should only be imported or compiled, not both — that is, unless all the code you feed to the compiler is in main.m, you need to have at least one header and one implementation file. The header can contain all the interface details for everything in your program and the implementation file can contain all the implementation details and it will work just like if you had separate files. You can just stack the contents of the would-be files end-to-end. That's actually what the #import and #include directives do — they literally copy the contents of the included file into the place where the directive is written.
Of course, what we're talking about here isn't a good design for a program at all.
Yes you can do that.
#import has built-in checks to prevent including the same file multiple times (avoiding stuff like #ifndef __MYHEADER_H...)
Yes you can have multiple classes in a same file but i don't prefer it. Its a good habit/good design to have classes in different files. Helps a lot in re-usability.
#import ensures that a file is only ever included once so that you never have a problem with recursive includes. I think performance may go down if use #include.

Objective-C equivalent of Java packages?

What is the Objective-C equivalent of Java packages? How do you group and organize your classes in Objective-C?
Question 1: Objective-C equivalent of Java packages?
Objective-C doesn't have an equivalent to Java packages or C++ namespaces. Part of the reason for this is that Objective-C was originally a very thin runtime layer on top of C, and added objects to C with minimum fuss. Unfortunately for us now, naming conflicts are something we have to deal with when using Objective-C. You win some, you lose some...
One small clarification (although it's not much for consolation) is that Objective-C actually has two flat namespaces — one for classes and one for protocols (like Java's interfaces). This doesn't solve any class naming conflicts, but it does mean you can have a protocol and class with the same name (like <NSObject> and NSObject) where the latter usually adopts ("implements") the former. This feature can prevent "Foo / FooImpl" pattern rampant in Java, but sadly doesn't help with class conflicts.
Question 2: How to [name] and organize Objective-C classes?
Naming
The following rules are subjective, but they are decent guidelines for naming Objective-C classes.
If your code can't be run by other code (it's not a framework, plugin, etc. but an end-user application or tool) you only need to avoid conflicts with code you link against. Often, this means you can get away with no prefix at all, so long as the frameworks/plugins/bundles you use have proper namespaces.
If you're developing "componentized" code (like a framework, plugin, etc.) you should choose a prefix (hopefully one that's unique) and document your use of it someplace visible so others know to avoid potential conflicts. For example, the CocoaDev wiki "registry" is a de facto public forum for calling "dibs" on a prefix. However, if your code is something like a company-internal framework, you may be able to use a prefix that someone else already does, so long as you aren't using anything with that prefix.
Organization
Organizing source files on disk is something that many Cocoa developers unfortunately gloss over. When you create a new file in Xcode, the default location is the project directory, right beside your project file, etc. Personally, I put application source in source/, test code (OCUnit, etc.) in test/, all the resources (NIB/XIB files, Info.plist, images, etc.) in resources/, and so on. If you're developing a complex project, grouping source code in a hierarchy of directories based on functionality can be a good solution, too. In any case, a well-organized project directory makes it easier to find what you need.
Xcode really doesn't care where your files are located. The organization in the project sidebar is completely independent of disk location — it is a logical (not physical) grouping. You can organize however you like in the sidebar without affecting disk location, which is nice when your source is stored in version control. On the other hand, if you move the files around on disk, patching up Xcode references is manual and tedious, but can be done. It's easiest to create your organization from the get-go, and create files in the directory where they belong.
My Opinion
Although it could be nice to have a package/namespace mechanism, don't hold your breath for it to happen. Class conflicts are quite rare in practice, and are generally glaringly obvious when they happen. Namespaces are really a solution for a non-problem in Objective-C. (In addition, adding namespaces would obviate the need for workarounds like prefixes, but could introduce a lot more complexity in method invocation, etc.)
The more subtle and devious bugs come from method conflicts when methods are added and/or overridden, not only by subclasses, but also be categories, which can cause nasty errors, since the load order of categories is undefined (nondeterministic). Implementing categories is one of the sharpest edges of Objective-C, and should only be attempted if you know what you're doing, particularly for third-party code, and especially for Cocoa framework classes.
They use long names...
Article on coding style & naming in Cocoa / Objective-C
Discussion whether Obj-C needs namespaces (deleted, archive here)
See
What is the best way to solve an Objective-C namespace collision?
for a discussion of how Objective-C has no namespaces, and the painful hacks this necessitates.
Unfortuantely objective c doesn't have any equivalent to namespace of C#,c++ and package of java....
The naming collisions could be solved by giving contextual name for example if u gonna give a name to method it should imply the class and module that it comes in so that...these problems could be avoided.
Go through the following url to know more on naming convention as advised by apple
http://developer.apple.com/library/ios/#documentation/cocoa/conceptual/ProgrammingWithObjectiveC/Conventions/Conventions.html
What about something like this (inside a directory)?
#define PruebaPaquete ar_com_oxenstudio_paq1_PruebaPaquete
#interface ar_com_oxenstudio_paq1_PruebaPaquete : NSObject {
and importing it like this:
#import "ar/com/oxenstudio/paq1/PruebaPaquete.h"
PruebaPaquete *p = [[PruebaPaquete alloc] init];
and when you have name collision:
#import "ar/com/oxenstudio/paq1/PruebaPaquete.h"
#import "ar/com/oxenstudio/paq2/PruebaPaquete.h"
ar_com_oxenstudio_paq1_PruebaPaquete *p = [[ar_com_oxenstudio_paq1_PruebaPaquete alloc] init];
ar_com_oxenstudio_paq2_PruebaPaquete *p2 = [[ar_com_oxenstudio_paq2_PruebaPaquete alloc] init];
Well, I think all the other answers here seem to focus on naming collisions, but missed at least one important feature, package private access control that java package provides.
When I design a class, I find it is quite often that I just want some specific class(es) to call its methods, b/c they work together to achieve a task, but I don't want all the other unrelated classes to call those methods. That is where java package access control comes in handy, so I can group the related classes into a packaged and make those methods package private access control. But there is no way to do that in objective c.
Without package private access control I find it is very hard to avoid people writing code like this, [[[[[a m1] m2] m3] m4] m5] or [a.b.c.d m1].
Update: Xcode 4.4 introduced "An Objective-C class extension header", in my opinion, that is in some way to provide "package private access control", so if you include the extension header, you can call my "package private" methods; if you only include my public header, you can only call my public API.