Objective-C - Arduino communication stops - objective-c

I am trying to control some stepper motors using an app I am writing in Objective-C and my Arduino board. I use popen to send a byte (the letter a) to my Arduino and count the steps taken (Xc):
-(IBAction)PlusX:(id)sender{
popen("echo a > /dev/tty.usbmodem621", "r");
Xc = Xc +1;
_lXc.stringValue = #(Xc);
[NSThread sleepForTimeInterval:0.16f];
}
My Arduino reads this in the void loop and makes a step.
if (Serial.available() > 0) {
// read the incoming byte:
incomingByte = Serial.read();
Serial.println(incomingByte);
if(incomingByte == 'a'){
MotorX->step(1, FORWARD, SINGLE);
}
}
This al works pretty much as expected. Except after byte/step/action 144 the Objective-C app keeps counting the steps correctly, however they don't appear in Arduino's serial monitor and the motor stops making steps. Is there anybody who knows why this keeps happening?
Thanks

you are opening many file (in linux everything is a file) but never closing it. Then you are creating "garbage" open file, because you can't use that file anymore, but it is there. And any OS give you a limit of maximum file open (file descriptor limit); in your case about 144.
when you "kill" your application, that descriptor get released, so you can use them again.
Also, because you don't check the descriptor is valid, you didn't debugged that after the 144 open it was giving error.
Solution (that does NOT check for error) is
pclose(popen("echo a > /dev/tty.usbmodem621", 'r'));

Related

STM32G0B1CE Can the Boot Option bits be used to jump to system bootloader?

I have seen that there are quite a few questions about jumping from an app to the ST system bootloader, for example this one. These use the method of setting the MSP and PC then doing the jump with a function pointer.
This seems to cause an issue with the system bootloader dual-bank management whereby the first jump fails and a second jump needs to be done.
My question is - would it be possible/better to use the user option bytes to jump to the bootloader instead?
Since the OB register is read during boot in the OBL phase, if we set both the "nBOOT1 bit" and "nBOOT_SEL bit" and clear the "nBOOT0 bit" then do a soft reset would this avoid the empty check weirdness and let us jump to the bootloader in one go?
(Just for context - this would be the first step of doing updates via CAN as the MCU in question has a CAN bootloader built in)
Thanks in advance!
After some time tinkering with a dev board and with some help from Tilen Majerle I found that this is indeed possible and does work well.
I added the following in my main() while(1) loop so that when the blue button is pressed, the user option bits are modified and a reset is performed.
I found that we don't have to do the soft reset ourselves as the HAL_FLASH_OB_Launch() function triggers the reset for us, after which we should boot into system memory according to the reference manual page 67.
Also I found that the flash and option bytes must be unlocked before setting the option bytes, but not locked afterwards or the reset won't occur.
Here is the code to do it:
if(HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin) == GPIO_PIN_RESET)
{
// Basic de-bounce for testing
HAL_Delay(100);
while(HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin) == GPIO_PIN_RESET)
{
__NOP();
}
// Read, modify & write user option bits
// nBOOT1 = 1, nBOOT_SEL = 1, nBOOT0 = 0; will select system memory as boot area
uint32_t optBits = FLASH->OPTR;
optBits = (optBits | FLASH_OPTR_nBOOT1 | FLASH_OPTR_nBOOT_SEL);
optBits &= ~(FLASH_OPTR_nBOOT0);
// Unlock flash
HAL_FLASH_Unlock();
// Clear OPTLOCK
HAL_FLASH_OB_Unlock();
// Set up struct with desired bits
FLASH_OBProgramInitTypeDef optionBytesSetting = {0};
optionBytesSetting.OptionType = OPTIONBYTE_USER;
optionBytesSetting.USERConfig = optBits;
optionBytesSetting.USERType = OB_USER_nBOOT0;
// Write Option Bytes
HAL_FLASHEx_OBProgram(&optionBytesSetting);
HAL_Delay(10);
// Soft reset
HAL_FLASH_OB_Launch();
NVIC_SystemReset(); // is not reached
}
I verified that the flash OPTR register is modified correctly (it goes from 0xFFFFFEAA to 0xFBFFFEAA, essentially just the nBOOT0 bit is cleared as the other two bits were already set). The MCU does reset at HAL_FLASH_OB_Launch() as expected and pausing the program reveals that after reset it is running the system bootloader based on the PC address.
I also verified it using STM32CubeProgrammer which allows me to view the PC and option bytes, plus lets me set nBOOT0 back to 1 and boot the board to my app.
As for reverting the OB settings programmatically, you could either use the Write Memory command before jumping to the app, or you could use the Go command to jump to the app then modify the option bytes first thing in your app.

Sending a text string out a serial port in C without using printf

I'm writing 8-bit PIC microcontroller C code in Microchip's MPLAB X tool using their XC8 compiler for a demo / evaluation board for a sensor IC. The PIC I'm using has multiple serial ports, so I'm using UART2 to output only sensor data. I wanted to be able to format the output data for hex or decimal so I have stdio redirected to this port. The Rx side of UART2 is unused.
UART1 is used for command and control. This port needs to be able to output ASCII messages such as "Enter the register address:". The sensor is highly configurable, so my code initializes it with default values, but the user can halt sampling, read and write registers and re-start sampling.
Since I can't use printf when writing to UART1, I had to find another way to do this. Here's an example of what I'm doing. The file is large so I'm just cutting and pasting the relevent stuff here:
char msgString[64];
switch(command)
{
case (READCMD): // Read command
{
if (SERIAL_STATE_IDLE == serialPortState)
{
strcpy (msgString, "Input Read Address Hex Value 00-18");
Display_PrintMessage();
Display_PrintChar(prompt);
serialPortState = SERIAL_STATE_READ;
}
...
void Display_PrintMessage(void)
{
msgLength=strlen(msgString);
for (i=0; i<msgLength; ++i)
{
UART1_Write(msgString[i]);
}
Display_PrintChar(newLine);
}
void Display_PrintChar(char c)
{
UART1_Write(c);
}
I've verified that the port is working by writing some characters out to it early in main and they do appear on my terminal. I think the problem is with how I'm using the strcpy function. In the MPLAB debugger it appears that msgString is still all null characters after the strcpy executes. The strlen function may see msgString as zero length, hence, nothing prints out.
I would love to hear what you think may be wrong with my code, or, please suggest another way of accomplishing what I need.
Thanks in advance for any and all responses, they are much appreciated.
CobraRGuy

Audio through CAN FD into headphones

I am trying to record audio using a 12 bit resolution ADC, take the sample buffer and send it through CAN FD to another device, which takes samples of this audio and creates a .wav and plays it. The problem is that I see the data of the microphone being sent through CAN FD to the other device, but I am not able to transform this data into a .wav file properly and hear what I say through the microphone. I only hear beeps.
I'm creating a new .wav every 4 CAN FD messages in order to make some kind of real time communication and decrease the delay, but I don't think this is possible or if I am thinking it the proper way.
In this thread I take the message sent by the CAN FD and concatenate it in a buffer in order to introduce it in a .wav file. I have tried bigger buffers but it doesn't change the outcome.
How could I be able to take the data from the CAN FD and hear it?
Clarification: I know using CAN FD to transmit audio isn't the proper way, but it is for a master project.
struct canfd_frame frame;
CAN_MSG msg;
int trama_can[72];
int nbytes;
while (status_libreria == 0)
;
unsigned char buffer[256];
// FILE * fPtr;
int i=0,x=0;
//fPtr = fopen("Test.txt", "w");
while (1) {
do {
nbytes = read(s, &frame, sizeof(struct canfd_frame));
} while (nbytes == 0);
msg.id.ext = frame.can_id;
msg.dlc = frame.len;
if (msg.dlc > 8)
msg.dlc = 8; //Protecci�n hasta adaptar AC3LIB a CANFD
Numas_memcpy(&(msg.data.bdata), &(frame.data), msg.dlc);
can_frame_2_ac3lib(&msg, BUS_VERTICAL);
for(x=0;x<64;x++) buffer[i*64+x] = frame.data[x];
printf("%d \r\n",frame.data[x]);
printf("i:%d \r\n",i);
// Copiar datos a fichero.wav y reproducirlo simultaneamente
if (i == 3) {
printf("Datos IN\r\n");
write_wav("prueba.wav",256 , (short int *)buffer, 16000);
//fwrite(buffer,1,sizeof(buffer),fPtr);
//fclose(fPtr);
system("aplay prueba.wav -f cd");
i = 0;
system("rm prueba.wav");
}
i++;
}
32 first bytes of the audio file being recorded
In the picture, as you can see, the data is being recorded. moreover, this data is the same data as in the ADC, but when I play it, I only hear noise.
Simplify the problem first. Make sure you can transmit known data from one end to the other first at low rates. I'm sure the suggestion below will sound far too trivial. But until you are absolutely confident you understand it all, I predict you sill have many struggles.
Slowly - one frame per second, or even slower.
Learn to send one 0x55 byte from one end to the other and verify at the receiver.
Learn to send a few 0x55 in one frame and verify.
Learn to send 0x12345678 - verify it ends up with the bytes in the right order at the other end
Learn to send a counter. Check it at the receiver, make sure you do not drop any data.
Now do it all again but 10x faster.
Continue until you can send a counter at 10x the rate you need to for the audio without dropping any frames at all, for minutes and then hours.
Stress the rest of the system to make sure it still works under stress.
Only now, can you start to learn about sending audio.
Trust me, you will learn a lot!

(STM32) Erasing flash and writing to flash gives HAL_FLASH_ERROR_PGP error (using HAL)

Trying to write to flash to store some configuration. I am using an STM32F446ze where I want to use the last 16kb sector as storage.
I specified VOLTAGE_RANGE_3 when I erased my sector. VOLTAGE_RANGE_3 is mapped to:
#define FLASH_VOLTAGE_RANGE_3 0x00000002U /*!< Device operating range: 2.7V to 3.6V */
I am getting an error when writing to flash when I use FLASH_TYPEPROGRAM_WORD. The error is HAL_FLASH_ERROR_PGP. Reading the reference manual I read that this has to do with using wrong parallelism/voltage levels.
From the reference manual I can read
Furthermore, in the reference manual I can read:
Programming errors
It is not allowed to program data to the Flash
memory that would cross the 128-bit row boundary. In such a case, the
write operation is not performed and a program alignment error flag
(PGAERR) is set in the FLASH_SR register. The write access type (byte,
half-word, word or double word) must correspond to the type of
parallelism chosen (x8, x16, x32 or x64). If not, the write operation
is not performed and a program parallelism error flag (PGPERR) is set
in the FLASH_SR register
So I thought:
I erased the sector in voltage range 3
That gives me 2.7 to 3.6v specification
That gives me x32 parallelism size
I should be able to write WORDs to flash.
But, this line give me an error (after unlocking the flash)
uint32_t sizeOfStorageType = ....; // Some uint I want to write to flash as test
HAL_StatusTypeDef flashStatus = HAL_FLASH_Program(TYPEPROGRAM_WORD, address++, (uint64_t) sizeOfStorageType);
auto err= HAL_FLASH_GetError(); // err == 4 == HAL_FLASH_ERROR_PGP: FLASH Programming Parallelism error flag
while (flashStatus != HAL_OK)
{
}
But when I start to write bytes instead, it goes fine.
uint8_t *arr = (uint8_t*) &sizeOfStorageType;
HAL_StatusTypeDef flashStatus;
for (uint8_t i=0; i<4; i++)
{
flashStatus = HAL_FLASH_Program(TYPEPROGRAM_BYTE, address++, (uint64_t) *(arr+i));
while (flashStatus != HAL_OK)
{
}
}
My questions:
Am I understanding it correctly that after erasing a sector, I can only write one TYPEPROGRAM? Thus, after erasing I can only write bytes, OR, half-words, OR, words, OR double words?
What am I missing / doing wrong in above context. Why can I only write bytes, while I erased with VOLTAGE_RANGE_3?
This looks like an data alignment error, but not the one related with 128-bit flash memory rows which is mentioned in the reference manual. That one is probably related with double word writes only, and is irrelevant in your case.
If you want to program 4 bytes at a time, your address needs to be word aligned, meaning that it needs to be divisible by 4. Also, address is not a uint32_t* (pointer), it's a raw uint32_t so address++ increments it by 1, not 4. As far as I know, Cortex M4 core converts unaligned accesses on the bus into multiple smaller size aligned accesses automatically, but this violates the flash parallelism rule.
BTW, it's perfectly valid to perform a mixture of byte, half-word and word writes as long as they are properly aligned. Also, unlike the flash hardware of F0, F1 and F3 series, you can try to overwrite a previously written location without causing an error. 0->1 bit changes are just ignored.

Arduino + OV7670 - Without FIFO - Reading Snapshot

I know that there is a lot in internet (http://forum.arduino.cc/index.php?topic=159557.0 for example) about OV7670 and I read a lot about it, but seems something is missing.
First of all I took a look into the way how can we read pixel by pixel from the camera to build the rectangular 600 X 480 image, and this was quite easy to understand considering HREF, VSYNCH and PCLOCK described on documentation here: http://www.voti.nl/docs/OV7670.pdf. I understand XCLOCK as an input I need to give to OV7670 as a kind of cycle controller and RESET would be something to reset it.
So at this point I thought that the functionality of such camera would be covered by wiring the following pins:
D0..D7 - for data (pixel) connected to arduino digital pins 0 to 7 as INPUT on arduino board
XCLK - for camera clock connected to arduino digital pin 8 as OUTPUT from arduino board
PCLK - for pixel clock connected to arduino digital pin 9 as INPUT on arduino board
HREF - to define when a line starts / ends connected to arduino digital pin 10 as INPUT on arduino board
VSYCH - to define when a frame starts / ends connected to arduino digital pin 11 as INPUT on arduino board
GRD - groud connected to arduino GRD
3V3 - 3,3 INPUT connected to arduino 3,3v
RESET - connected to arduino RESET
PWDN - connected to arduino GRD
The implementation for such approach from my point of view would be something like:
Code:
for each loop function do
write high to XCLK
if VSYNCH is HIGH
return;
if HREF is LOW
return;
if lastPCLOCK was HIGH and currentPCLOCK is LOW
readPixelFromDataPins();
end for
My readPixelFromDataPins() basically read just the first byte (as I'm just testing if I can even read something from the camera), and it is written as follows:
Code:
byte readPixelFromDataPins() {
byte result = 0;
for (int i = 0; i < 8; i++) {
result = result << 1 | digitalRead(data_p[i]);
}
return result;
}
In order to check if something is being read from the camera I just print it to the Serial 9600, the byte read from data pins as a number. But currently I'm receiving only zero values. The code I'm using to retrieve an image is stored here: https://gist.github.com/franciscospaeth/8503747.
Did somebody that makes OV7670 work with Arduino already figure out what am I doing wrong? I suppose I'm using the XCLOCK wrongly right? What shall I do to get it working?
I searched a lot and I didn't found any SSCCE (http://sscce.org/) for this camera using arduino, if somebody have it please let me know.
This question is present on arduino forum (http://forum.arduino.cc/index.php?topic=211741.0) too.
your idea is not bad but ...
the xclock need to be a clock (in your program is just a transition from 0 to 1 and is freezing there)
you need also to use I2C with SIOC and SIOD for configuring the camera (or you can use the default settings, but I am not sure if is the correct output format for you, 30F/s,VGA, YUV format ....)
your code execution is slower using the serial output in the same loop with reading data
I will recommend you to toggle the xclock pin and to move the pixel print in a if(). Also you will be able to read Data only in a very precise time, if you want to read only one byte, than after a transition from 0 to 1 of HREF you need to wait for a new transition from 0 to 1 of PCLK (you will be able to see only one 0-1 transition of HREF after 784x2 transitions of PCLK, (640 active pixels + 144 dead time for each line) x 2 (for YUV or RGB are 2 bytes received for each pixel) )
Hello I am Mr_Arduino from the arduino forums. Your issue is that you are reading pixels too slow please do not use digital read to do such a thing. Also if you insist on using a separate function just to read a byte make sure the function is being inlined. You can do this by declaring your function as static inline. Also as mentioned above how are you generating the clock. You can generate the XCLK using PWM on the arduino.
I have created a working example here:
https://github.com/ComputerNerd/arduino-camera-tft/blob/master/captureimage.c
Edit: a 3rd party has copied part but not all of the code from the above link into the answer here. However, the link must remain as the code posted below requires additional files from that source to actually work.
Edit 2: Removed irrelevant code. You will need to modify what you do with the data.
void capImg(void){
cli();
uint8_t w,ww;
uint8_t h;
w=160;
h=240;
tft_setXY(0,0);
CS_LOW;
RS_HIGH;
RD_HIGH;
DDRA=0xFF;
//DDRC=0;
#ifdef MT9D111
while (PINE&32){}//wait for low
while (!(PINE&32)){}//wait for high
#else
while (!(PINE&32)){}//wait for high
while (PINE&32){}//wait for low
#endif
while (h--){
ww=w;
while (ww--){
WR_LOW;
while (PINE&16){}//wait for low
PORTA=PINC;
WR_HIGH;
while (!(PINE&16)){}//wait for high
WR_LOW;
while (PINE&16){}//wait for low
PORTA=PINC;
WR_HIGH;
while (!(PINE&16)){}//wait for high
WR_LOW;
while (PINE&16){}//wait for low
PORTA=PINC;
WR_HIGH;
while (!(PINE&16)){}//wait for high
WR_LOW;
while (PINE&16){}//wait for low
PORTA=PINC;
WR_HIGH;
while (!(PINE&16)){}//wait for high
}
}
CS_HIGH;
sei();
}
You can also find it on github.
You can use my instruction: how to retrieve image from ov7670 It contains all the steps you need. There is also instuction to setup FrameGrabber: how to run framegrabber