Sometimes I declare an ivar but after a while I am no longer using it. I would like to remove this sort of cruft from my code, but I cannot find a warning that will show me my unused ivars.
Is there a tool or built in feature of Xcode that will allow me to find all of my unused ivars?
I see that the static analyzer has CLANG_ANALYZER_OBJC_UNUSED_IVARS, but it does not seem to do anything.
#implementation AppDelegate
{
#private
BOOL _foo; // Never read or written to
}
Runing the analyzer in Xcode 5 with CLANG_ANALYZER_OBJC_UNUSED_IVARS (unused ivars) set to YES never produces a warning.
Based on the relevant Clang source code and a couple of quick tests, it seems that the analyzer does not look at ivars that are not both declared in the #interface and marked #private.
#interface Igloo : NSObject
{
NSString * address; // No warning
#private
NSInteger radius; // Warning
}
#end
#implementation Igloo
{
NSInteger numWindows; // No warning
#private // Has no real effect, of course; just testing
NSString * doormatText; // No warning
}
#end
I suggest filing a bug/submitting a patch.
It appears that the static analyzer option only works if you declare the ivar in the header file.
This generates the analyzer warning correctly:
// AppDelegate.h
#interface AppDelegate : NSObject <UIApplicationDelegate>
{
BOOL _foo; // never read or written
}
#end
Neither of these generates any sort of analyzer warning:
// AppDelegate.m
#interface AppDelegate ()
{
#private
BOOL _goo; // never read or written
}
#end
#implementation AppDelegate
{
#private
BOOL _hoo; // never read or written
}
#end
So it looks like you cannot use the modern syntax to keep ivars in the .m file if you want to check for unused ivars.
In Xcode from product menu click on analyze... It will show you unused variables. This will also tell you about dead code.
Related
I want to define private instance variables in MyClass.m file. It seems to me there are two ways to do it:
use class extension
#interface HelloViewController ()
{
int value;
}
define in #implementation section
#implementation HelloViewController
{
int value;
}
Which is better?
I think recent Apple's coding style is to use class extension?
e.g. MasterViewController.m generated by 'Master-Detail Application Template'
#interface MasterViewController () {
NSMutableArray *_objects;
}
#end
The "Modern Objective-C" way to do this is to declare them in your implementation block, like this:
#implementation ClassName {
int privateInteger;
MyObject *privateObject;
}
// method implementations etc...
#end
See this earlier post of me with more details.
#interface HelloViewController ()
{
#private //optional, this is old style
int vale;
}
If you were making a library, though, theoretically no one would know about any methods you didn't declare in the header files.
Copied from: How to make a real private instance variable?
Declaring instance variables in the #implementation is a recent
feature of Obj-C, this is why you see a lot of code with them in the
#interface - there was no other choice.
If you are using a compiler which supports declaring instance
variables in the implementation declaring them there is probably the
best default - only put them in the interface if they need to be
accessed by others.
Instance variables declared in the implementation are implicitly
hidden (effectively private) and the visibility cannot be changed -
#public, #protected and #private do not produce compiler errors (with
the current Clang at least) but are ignored.
Copied from: Private ivar in #interface or #implementation
In my view the best is to define it like private properties that you can access as fields or properties just within your implementation, the advatage is that you can access them by self as well as by _fieldName syntax what is handy in some situations.
#interface SignUpController ()
#property ViewHeaderView*header; //private properties/fields
#property UITextField*activeField;
#property CGFloat keyboardHeight;
#end
#implementation SignUpController {
}
#end
Sorry to keep asking basic questions here but I don't know where else to go. Wrote some code with a slider, textfield and buttons for incrementing the slider to demonstrate key value coding. Everything worked find. The next step was to use 'property' and 'synthesize' in place of the accessor and setter methods;
#import <Foundation/Foundation.h>
#interface KVCController : NSObject {
int fido;
}
#property(readwrite, assign) int fido;
#end
~~~~~
#implementation KVCController
#synthesize fido;
- (id)init{
self = [super init];
if (self) {
// Initialization code here.
[self setValue:[NSNumber numberWithInt:5] forKey:#"fido"];
NSNumber *n = [self valueForKey:#"fido"];
NSLog(#"fido = %#", n);
}
return self;
}
~~~~~~~
#end
I get an incomplete implementation error on #implementation KVCController. If I put the get and set methods for 'fido' in it clears up.
The second error occurs with #synthesize fido;. It says property must be declared in the implementation. Everything is copied correctly out of the book and near as I can tell, it looks just like all the other uses of property and synthesize I have looked at. Anyone have any ideas on what I am missing or doing wrong?
Xcode 4.1 automatically creates a delegate class which I usually ignore if I am not working on delegates. I created my own class for the KVC exercise and just added the property/synthesize declarations to it with appropriate modifications and got the errors. I just put the property/synthesize declarations into the delegate class, moved my IBAction code to the appropriate places, redid the bindings, and erased the class I created and everything worked fine. Do property/synthesize declarations need to be treated like delegate material?
incomplete implementation means you have a -(void)something that may be defined in your header that you are not using in your #implementation. Make sure that you do not have any unused methods listed in your header. if you do, either remove them from the header, or create the method in your implementation.
- (void) dosomething
{
/* blank for now */
}
if you have -(void)dosomething in your implementation, define it in your header.
#import <Foundation/Foundation.h>
#interface KVCController : NSObject {
int fido;
}
#property(readwrite, assign) int fido;
- (void) dosomething;
#end
I recently learned that you can add ivar in a class extension with LLVM2.0. (gcc can't do this)
This is somehow really private iVar because other users don't it's existence since it's not in the header file.
like:
//SomeClass.h
#interface SomeClass : NSObject {
}
#end
//SomeClass.m
#interface SomeClass ()
{
NSString *reallyPrivateString;
}
#end
#implementation SomeClass
#end
But this does rely on the compiler. Is there any other way to declare an ivar that's not in the header file?
The only place to declare instance variables is in the interface or a class extension (which is really an extension of the interface). But you can effectively add instance variables at any time with the modern runtime using the associated object functions.
If you are implementing a library and want to hide your instance variables take a look at what Apple does in the interface for UIWebView. They have an internal webview that does not expose a header file.
#class UIWebViewInternal;
#protocol UIWebViewDelegate;
UIKIT_CLASS_AVAILABLE(2_0) #interface UIWebView : UIView <NSCoding, UIScrollViewDelegate> {
#private
UIWebViewInternal *_internal;
}
If you're just going to be using the ivar internally, and you're using the modern runtime (Snow Leopard 64 bit and iOS 3.0+, I think) then you can just declare properties in a class extension and synthesize them inside the class. No ivars are exposed in your header, no messy id _internal objects, and you get around fragile ivars, too.
// public header
#interface MyClass : NSObject {
// no ivars
}
- (void)someMethod;
#end
// MyClass.m
#interface MyClass ()
#property (nonatomic, retain) NSString *privateString;
#end
#implementation MyClass
#synthesize privateString;
- (void)someMethod {
self.privateString = #"Hello";
NSLog(#"self.privateString = %#", self.privateString);
NSLog(#"privateString (direct variable access) = %#", privateString); // The compiler has synthesized not only the property methods, but also actually created this ivar for you. If you wanted to change the name of the ivar, do #synthesize privateString = m_privateString; or whatever your naming convention is
}
#end
This works with Apple's gcc, in addition to LLVM. (I'm not sure if this works on other platforms, ie not Apple's gcc, but it will certainly work for both iOS and Snow Leopard+).
Perhaps this is the wrong way to go about this, but it seems like such a clean and workable approach that I wonder how I can make the compiler warning go away?
#interface SomeView : UIView {
NSString *stringOfsomeImportance;
RelatedClass *niftyService;
}
#property (nonatomic, copy) NSString * stringOfnoImportance;
#property (nonatomic, retain) RelatedClass *niftyService;
#implementation
-(void)someMethod;
-(void)otherMethods;
#implementation RelatedClass *pvSomeObj = [[RelatedClass alloc] initWithSender:self];
[self setNiftyService:pvSomeObj];
Now, looking at the RelatedClass implementations...
#interface RelatedClass : NSObject {
id thesender;
#property (nonatomic, retain) id thesender;
#implementation
[thesender otherMethods]; // this generates a compiler warning
// that otherMethods cannot be found
// in SomeView, though it *is* found
// and seems to execute just fine
This seems like a valid approach, so I'm left wondering why the warning?
Is there a way to better "explain" this to the compiler?
Could someone kindly share if this type of linkage is encouraged or if there is a better way to link two related, interdependent classes that need to communicate with one another?
I can't statically declare the sender object (SomeView) in RelatedClass because that seems to cause a recursion problem, as SomeView is defined with RelatedClass as a member...
Any suggestions?
You can define a protocol and say that your thesender object must conform to it:
#protocol MyProtocol
-(void)otherMethods;
#end
#interface RelatedClass : NSObject {
id<MyProtocol> thesender; // Now compiler knows that thesender must respond
// to otherMethods and won't generate warnings
}
You can send otherMethods message another way (you may need to define theSender as NSObject here):
if ([theSender respondsToSelector:#selector(otherMethods)])
[theSender performSelector:#selector(otherMethods)];
Edit: Actually you can also define thesender as SomeView* in your RelatedClass using forward class declaration:
//SomeView.h
#class RelatedClass;
#interface SomeView : UIView {
RelatedClass *niftyService;
}
// then include RelatedClass.h in SomeView.m
//RelatedView.h
#class SomeView;
#interface RelatedClass : NSObject {
SomeView* thesender;
}
// then include SomeView.h in RelatedClass.m
In your headers, you can forward declare classes that you want to use. In your implementation files, you can include the full header of those classes that you forward-declared.
For example:
SomeView.h
#import <FrameworkHeader.h>
// Here, you are saying that there is a class called RelatedClass, but it will be
// defined later.
#class RelatedClass;
#interface SomeView : UIView
{
RelatedClass *niftyService;
}
#end
SomeView.m
#import "SomeView.h"
#import "RelatedClass.h"
// By including "RelatedClass.h" you have fulfilled the forward declaration.
#implementation SomeView
// Can use "RelatedClass" methods from within here without warnings.
#end
RelatedClass.h
#import <FrameworkHeader.h>
#class SomeView;
#interface RelatedClass
{
SomeView *someView;
}
// methods
#end
RelatedClass.m
#import "RelatedClass.h"
#import "SomeView.h"
#implementation RelatedClass
// Can use "SomeView" methods from within here without warnings.
#end
id thesender = ....;
[thesender otherMethods]; // this generates a compiler warning
// that otherMethods cannot be found
// in SomeView, though it *is* found
// and seems to execute just fine
For the above to generate the warning as you describe, it is entirely because the method -otherMethods has not been declared someplace where the compiler sees the declaration before attempting to compile the call site.
That is, the declaration of the method:
- (void) otherMethods;
Must appear in a header file that is imported -- directly or indirectly -- by the implementation file compiling that particular call site or the method declaration must appear in the #implementation before the call site.
I came across a library written in Objective C (I only have the header file and the .a binary).
In the header file, it is like this:
#interface MyClass : MySuperClass
{
//nothing here
}
#property (nonatomic, retain) MyObject anObject;
- (void)someMethod;
How can I achieve the same thing? If I try to declare a property without its corresponding ivar inside the interface's {}, the compiler will give me an error. Ultimately, I want to hide the internal structure of my class inside the .a, and just expose the necessary methods to the header file. How do I declare instance variables inside the .m? Categories don't allow me to add ivar, just methods.
For 64 bit applications and iPhone applications (though not in the simulator), property synthesis is also capable of synthesizing the storage for an instance variable.
I.e. this works:
#interface MyClass : MySuperClass
{
//nothing here
}
#property (nonatomic, retain) MyObject *anObject;
#end
#implementation MyClass
#synthesize anObject;
#end
If you compile for 32 bit Mac OS X or the iPhone Simulator, the compiler will give an error.
You may use of the same idiom used in Cocoa classes. If you have a look to NSString class interface in NSString.h you'll see that there is no instance variable declared. Going deeper in GNUstep source code you'll find the trick.
Consider the following code.
MyClass.h
#interface MyClass : NSObject
// Your methods here
- (void) doSomething;
#end
MyClass.m
#interface MyClassImpl : MyClass {
// Your private and hidden instance variables here
}
#end
#implementation MyClass
+ (id) allocWithZone:(NSZone *)zone
{
return NSAllocateObject([MyClassImpl class], 0, zone);
}
// Your methods here
- (void) doSomething {
// This method is considered as pure virtual and cannot be invoked
[self doesNotRecognizeSelector: _cmd];
}
#end
#implementation MyClassImpl
// Your methods here
- (void) doSomething {
// A real implementation of doSomething
}
#end
As you can see, the trick consist in overloading allocWithZone: in your class. This code is invoked by default alloc provided by NSObject, so you don't have to worry about which allocating method should be used (both are valid). In such allocWithZone:, you may use the Foundation function NSAllocateObject() to allocate memory and initialize isa for a MyClassImpl object instead of MyClass. After that, the user is dealing with a MyClassImpl object transparently.
Of course, the real implementation of your class shall be provided by MyClassImpl. The methods for MyClass shall be implemented in a way that considers a message receiving as an error.
You can use a class extension. A class extension is similar as category but without any name. On the Apple documentation they just define private methods but in fact you can also declare your internal variables.
MyClass.h
#class PublicClass;
// Public interface
#interface MyClass : NSObject
#property (nonatomic, retain) PublicClass *publicVar;
#property (nonatomic, retain) PublicClass *publicVarDiffInternal;
- (void)publicMethod;
#end
MyClass.m
#import "PublicClass.h"
#import "InternalClass.h"
// Private interface
#interface MyClass ( /* class extension */ )
{
#private
// Internal variable only used internally
NSInteger defaultSize;
// Internal variable only used internally as private property
InternalClass *internalVar;
#private
// Internal variable exposed as public property
PublicClass *publicVar;
// Internal variable exposed as public property with an other name
PublicClass *myFooVar;
}
#property (nonatomic, retain) InternalClass *internalVar;
- (void)privateMethod;
#end
// Full implementation of MyClass
#implementation MyClass
#synthesize internalVar;
#synthesize publicVar;
#synthesize publicVarDiffInternal = myFooVar
- (void)privateMethod
{
}
- (void)publicMethod
{
}
- (id)init
{
if ((self = [super init]))
{
defaultSize = 512;
self.internalVar = nil;
self.publicVar = nil;
self.publicVarDiffInternal = nil; // initialize myFooVar
}
return self;
}
#end
You can give MyClass.h to anyone with just your public API and public properties. On MyClass.m you declare your member variable private and public, and your private methods, on your class extension.
Like this it's easy to expose public interfaces and hide detail implementation. I used on my project without any troubles.
According to the documentation I've been looking at there is no problem. All you have to do to hide instance variables is to declare them at the start of the #implementation section, inside { ... }. However, I'm a relative newcomer to Objective C and there's a chance I have misunderstood something - I suspect that the language has changed. I have actually tried this system, using XCode 4.2, building code for the iPad, and it seems to work fine.
One of my sources for this idea is the Apple developer documentation at http://developer.apple.com/library/ios/#documentation/cocoa/conceptual/objectivec/Chapters/ocDefiningClasses.html, which gives this pattern:
#implementation ClassName
{
// Instance variable declarations.
}
// Method definitions.
#end
Two possibilities:
It could be taking advantage of the modern runtime's ability to synthesize instance variables, as bbum suggested.
The property might not have an underlying instance variable in that class. Properties do not necessarily have a one-to-one mapping with instance variables.
No you can't. But you can do this if you're not using #property:
.h
#interface X : Y {
struct X_Impl* impl;
}
-(int)getValue;
#end
.m
struct X_Impl {
int value;
};
...
#implementation X
-(void)getValue {
return impl->value * impl->value;
}
#end
How about a macro trick?
Have tested code below
have tested with dylibs - worked fine
have tested subclassing - Warning! will break, I agree this makes the trick not that useful, but still I think it tells some about how ObjC works...
MyClass.h
#interface MyClass : NSObject {
#ifdef MYCLASS_CONTENT
MYCLASS_CONTENT // Nothing revealed here
#endif
}
#property (nonatomic, retain) NSString *name;
#property (nonatomic, assign) int extra;
- (id)initWithString:(NSString*)str;
#end
MyClass.m
// Define the required Class content here before the #import "MyClass.h"
#define MYCLASS_CONTENT \
NSString *_name; \
int _extra; \
int _hiddenThing;
#import "MyClass.h"
#implementation MyClass
#synthesize name=_name;
#synthesize extra=_extra;
- (id)initWithString:(NSString*)str
{
self = [super init];
if (self) {
self.name = str;
self.extra = 17;
_hiddenThing = 19;
}
return self;
}
- (void)dealloc
{
[_name release];
[super dealloc];
}
#end
DON'T do this, but I feel it should be noted that the runtime has the ability to add ivars whenever you want with class_addIvar
I was able to do the following in my library:
myLib.h:
#interface MyClass : SomeSuperClass <SomeProtocol> {
// Nothing in here
}
- (void)someMethods;
#end
myLib.m
#interface MyClass ()
SomeClass *someVars;
#property (nonatomic, retain) SomeClass *someVars;
#end
#implementation MyClass
#synthesize someVar;
- (void)someMethods {
}
#end
The protocol is optional of course. I believe this also makes all your instance variables private though I'm not 100% certain. For me it's just an interface to my static library so it doesn't really matter.
Anyway, I hope this helps you out. To anyone else reading this, do let me know if this is bad in general or has any unforeseen consequences. I'm pretty new to Obj-C myself so I could always use the advice of the experienced.
I don't think the following code written in another answer is working as expected.
The "SomeClass *someVars" defined in the extension class is not an instance variable of MyClass. I think it is a C global variable. If you synthesize someVars, you will get compile error. And self.someVars won't work either.
myLib.h
#interface MyClass : SomeSuperClass <SomeProtocol> {
// Nothing in here
}
- (void)someMethods;
#end
myLib.m
#interface MyClass ()
SomeClass *someVars;
#property (nonatomic, retain) SomeClass *someVars;
#end
#implementation MyClass
#synthesize someVar;
- (void)someMethods {
}
#end