I am working with a client who would have website as .com, .in, .com.au, .jp, .eu etc. We are planning to buy an SSL. Its a eCommerce site and needs to be secured. What SSL certificate should i choose to support various domains together?
Should i buy a SAN certificate? I would need some directions here. What will show up when some one clicks on the certificate of .jp webiste.
You are correct. You will need a unified communications (UC, SAN) certificate. Each TLD being different causes the domain to be different.
A UC certificate will let you bond all of the domains under one trust relationship. However, I would recommend just having different SSL certificates for each of them unless you plan on running them all on the same host machine.
Another potentially viable alternative, depending on how many other certificates you will need, would be to apply for a certificate authority (CA) trust with say VeriSign or any other CA. This would let you control your own enterprise PKI and issue any number of certificates while only paying one very large fee up front.
Related
I have an online shop and I've just installed a new SSL certificate and it was free. It does seem too good to be true. I'm a very cynical type of person.
I don't know about different types of SSL, but I just need to be able to accept payment data (I'm using a PayPal add-in on Opencart).
I got my certificate from letsencrypt and they don't explain much on there website.
But if you go to my website Gwenllian-retail you will see the certificate. Can I handle financial transactions with that?
If not what type of SSL do I need?
One does not need much money or complicated software to create valid SSL certificates. I could create my own with ease, if I wanted. In fact, I have done. There is no reason to think that LetsEncrypt certificates are somehow of a wrong kind.
The question is whether people will trust those certificates, and that comes back to whether they trust the Certificate Authority (CA) that signed them. If I sign my own certificate and present that to someone as proof of my identity then that other party has no more reason to trust that the data within accurately identify me than if I just told them directly.
LetsEncrypt serves as the CA for SSL certificates it provides. I have never relied on them for a certificate, but according to hosting company DreamHost, LetsEncrypt certificates are trusted by all major browsers. (LetsEncrypt makes the same claim about itself, too.)
Again, all this trust business is mostly about authentication: whether the entity that presents the certificate (your web site) is really the entity that it says it is. It is not about the nature or quality of the encryption with which the session is secured. That comes down to the capabilities of the two endpoints, and is largely independent of the certificate.
Let's Encrypt is a well known service backed up by many big players. So yes, it's OK to use it in on your site. BUT ! SSL certificate is not everything, it's only one of many shields to protect you application.
I'm not quite understanding the necessity of certificate pinning in SSL connection establishment (to avoid Man in the Middle attacks).
SSL cert pinning requires embedding original server certificate in the host to verify with the one presented by server. what is the difference between the server certificate embedded in the host and the one presented by server to be validated by client?
What is that I am missing here?
what is the difference between the server certificate embedded in the host and the one presented by server to be validated by client?
There should be none and that's exactly the point of certificate pinning.
Without certificate pinning an application commonly accepts any certificate which matches the requested hostname and is issued by a locally trusted CA (certificate authority). Given that there are usually more than 100 CA in the local trust store it is sufficient that one of these got successfully attacked as in the case of DigiNotar in 2011. Thus it makes sense to limit the certificate you accept to a specific one, i.e. pinning.
Besides the certificate pinning by comparing the certificate received with a locally stored certificate there are other ways of pinning: for example one might just check against a fingerprint (hash) and not the full certificate. In case the certificate can expire it might be more useful to check only the public key and not the whole certificate because the public key is often kept on certificate renewal. Or one might pin to a specific CA which one considers trusted to issue certificates for this domain.
Note that to understand pinning you might need to understand how the authentication of the server works. One part of this is that the server certificate is validated (hostname, expiration, trust chain ...). But this is not enough since the certificate itself is public, i.e. everybody can get it and could send it inside the TLS handshake. Thus the other major part of the authentication is that the server proves that it is the owner of the certificate. This is done by signing some data using the private key matching the certificate. Since only the owner of the certificate should have the private key this proves ownership. Because of this anybody could embed the servers certificate for pinning but only the server itself can prove ownership of the certificate.
What is SSL pinning
Applications are configured to trust a select few certificates or certificate authority (CA), instead of the default behaviour: to trust all CAs that are pre-configured on the device/ machine. SSL pinning is not required.
Why use SSL Pinning (Why not to)
In many cases, the certificate returned by a server could be tampered as long as any Root (or intermediate root) CA was compromised (happens very rarely). Threat actors could use this compromised CA to generate a certificate for your website, and show visitors their website instead. This is bad. SSL pinning was designed to prevent this in some cases, but there are better ways (IMHO).
Having said that, I don' t know any website which uses SSL pinning so SSL pinning seems primarily discussed for mobile apps. It seems like SSL pinning only works when you can trust the source of the application (e.g. App Store, Play Store) Why? Because if you have to visit a website to get the cert, by then its too late (you might have already used a dodgy cert and accessed the fake website or was MITM'd). Therefore, it seems like the benefits Steffen mentioned are not so compelling, especially when there are better solutions already:
Better solution
I'm not sure if any-CA-compromise is a threat vector, even for banks. Instead, banks and other security conscious organisations will pick their CA wisely, and also configure a CAA record.
By using a CAA DNS record, they can restrict clients (e.g. browsers, mobile apps) to trust only certain certificates when accessing their specific website.
They pick the CA and create a cert only from this CA
They will have a backup plan for if a CA is compromised. Don't want to go into that here, but the backup plan for CAA records is IMHO much better than that of SSL pinning.
For example, Monzo.com (I used whatsmydns to find this) has a CAA record which restricts certificates to only 4 CAs (digicert, amazon, comodoca, buypass):
0 iodef "mailto:security#monzo.com"
0 issue "amazon.com"
0 issue "buypass.com"
0 issue "comodoca.com"
0 issue "digicert.com"
0 issue "letsencrypt.org"
0 issuewild "amazon.com"
0 issuewild "comodoca.com"
0 issuewild "digicert.com"
0 issuewild "letsencrypt.org"
These are popular CAs which people trust, we hope they don't let us down. If they do, the whole internet would be a free for all. The only way to prevent this is to be your own CA/ use self-signed certificates.
Summary
I don't see how SSL pinning will become ubiquitous, especially since it adds more overhead (maintenance regarding ssl expiry, or trusting one CA anyway - SPoF, or emulating what a CAA record does but with additional code/ maintenance burden). It also only supports your pre-installed applications, not websites.
I'm having a bit of trouble understanding a bit about SSL, namely self-signed vs certified.
First, is my assumption that a self-signed certificate will still prompt the common browser warning message?
Second, data from a https domain doesn't transfer to a http domain, right? So if I had my site at domain.com, and my api at api.domain.com, I would need two certs, and have both of them setup for https?
Last, I noticed there are free SSL certs at sites like StartSSL. This feels fishy, given it can easily cost $100 for a cert at other sites. Am I wrong in being concerned?
Using a self-signed certificate will cause browser warnings. Your assumption is correct.
It depends; some browsers may warn when this occurs. But you absolutely should serve all of your services on HTTPS, so that clients can authenticate your site(s) and so that the connection is private.
It is possible to support multiple domains on a single certificate, via the Subject Alternative Name (SAN, subjectAltName) X.509 certificate extension. You could also use separate certificates.
StartSSL is trusted by all browsers; their certificates will be accepted and there is nothing "fishy" about them. You could use StartSSL's free offering to obtain two certificates - one for each domain.
If you want a single certificate for multiple domains via the SAN extension, you will have to find a product that supports that, and it will probably not be free. The Let's Encrypt initiative is working to
change the landscape in this regard, but they have not yet launched.
Does anybody know whether it's feasible to have a csr signed by two CAs and deliver both certificates?
Reason for asking:
a server running several services (https, mail, imap, git, xmpp...) and i run a CA for it, also used for client certs (xmpp, mail encryption etc.).
This means users have to import th CA cert, which is ok for power users.
Some applications (mail and https) have to be accessible by regular (non-power?, common?) users, so it would be great to use a free ssl cert which is already installed in all common browsers for that (I think of startssl).
My first attempt is to get my CA cert signed by the official CA e.g. startssl, but its understandable that this does not work for free use.
So now I think about creating a csr for the common used services and have it signed by an official CA and my own CA, serving with both certificates, the official as "fallback".
or is there a smarter way?
You can't have a certificate signed by multiple CAs (there's only one issuer in the X.509 format). You can submit the same CSR to 2 CAs, but this will produce 2 distinct certificates (if that's your aim, it's usually better to have different key material, so different CSRs anyway).
If your clients support Server Name Indication (SNI), you could potentially server two distinct certificates on the same service, but the services would also need to have different names (otherwise, it's impossibly to distinguish which name is requested).
You're certainly over-complicating your problem by trying to use two distinct CAs or two certs on the same service on your server.
"Power users" will also certainly have the main commercial CAs in their trust anchors anyway. In this case, serving them a certificate signed by your own CA doesn't really bring any advantage. If their main difference is the fact they would come with a client-cert issued by your own CA, nothing prevents you from trusting your own CA (and therefore their client-certs) on your server, while still presenting a server certificate issued by a commercial CA. The trust anchors used by your server don't necessarily have anything to do with the trust anchors used by its clients.
I'm developing software which will be deployed using clickonce (on the website foo.com), and which will then connect to my server using WCF with an encrypted transport
So I need an SSL certificate which will :
Identify my foo.com website has really being my website
Identify the exe I deploy using clickonce as being genuine
Identify my application server has really being my application server.
I also want my SSL certificate to be signed by an authority known to the public (ie, firefox or windows won't ask the user to install the authority's certificate first !)
What SSL certificate would you buy?
I've browsed the Verisign website, the "Secure Site EV" certificate costs 1150€ a year (the "Pro" version seems useful only for compatibility with older browsers)
It sounds like you're looking for two different types of certificates:
1 - SSL Certificate - for authentication of your website/application server.
2 - Code Signing Certificate - for integrity/authentication of the exe you deliver.
Typically those are two different certificates, with two different certificate profiles. At the very least, you need one certificate with two different key usages or extended key usages.
A few thoughts in no specific order:
Check your targeted browsers, they should each have a set of preconfigured root certificates - those are the most widely recognized public certificate sources. I'd probably check both Firefox and IE. Certificate vendors known to me as big names are - Versign, GeoTrust, RSA, Thawte, Entrust. But there's also GoDaddy and many others. Anything that comes in the delivered browser as a Trusted Root Certificate, will allow you to connect to your users without additional greif.
I suggest Googling for both "code signing certificate" and "SSL certificate".
How you configure your site will determine whether or not your website is validated or your authentication server is validated. If the certificate is stored on the apps server, then your user is getting SSL encryption all the way to the server. But many sites put the SSL certificate a little farther forward - like on a firewall, and then stage a collection of apps servers behind it. I don't see a security flaw in that, so long as the networking is carefully configured. To the outside users, both configurations will look the same - they'll get the lock on their browsers and a certificate that tells them that www.foo.com is offering it's credentials.
I'm seeing pretty great deals for SSL Certificates:
- GoDaddy - $12.99
- Register.com - $14.99
But they aren't necessarily code signing certifiates. For example, while GoDaddy's SSL Cert is $12.99, their code signing certs are $199.99! That's part of many certificate vendors business models - lure you in with cheap SSL Certs, and make you pay for code signing. A case could be made that code signing certificates are relatively higher liability. But also... they have to subsidize the cheap SSL certs somehow.
Theoretically, it should be possible to make a certificate that does both code signing and SSL, but I'm not sure you want that. If something should happen, it would be nice to be able to isolate the two functions. Also, I'm pretty sure you'd have to call the certificate vendors and ask if they did this, and if they don't, having them do it will likely jack up the price quite high.
As far as vendor, things to consider:
The technology is pretty much all the same. These days, aim for a minimum of 128 bit keys, I'd probably bump it up to 256, but I'm paranoid.
Beyond browser acceptabiliy, the only reason to pay more would be name recognition. Among the paranoid security wonks, I'd expect RSA, Thawte, Verisign and GeoTrust to have very good reputations. Probably EnTrust, too. This probably only matters if you are dealing with a security focused product. I think your average user will not be so aware.
From a security geek perspective - you're only as safe as the security of your Root CA (Certificate Authority). For the truly paranoid, the thing to do would be to dig into the background material of how the company hosts its root and issuing CAs, how are they physically securited? network security? personnel access control? Also - do they have public CRLs (Certificate Revocation Lists), how do you get a cert revoked? Do they offer OCSP (Online Certificate Status Protocol)? How do they check out certificate requestors to be sure they are giving the right cert to the right person? ... All this stuff really matters if you are offering something that must be highly secure. Things like medical records, financial managment applications, tax information, etc should be highly protected. Most web apps aren't so high risk and probably don't require this degree of scrutiny.
On that last bullet - if you dig into the Verisigns of the world - the very expensive certs - you're likely to see the value. They have a massive infrastructure and take the security of their CAs very seriously. I'm not so sure about the super-cheap hosting services. That said, if your risk is low, US$300 for an SSL Cert doesn't make much sense compared to US$12.99!!
So for web site / application servers you need an SSL certificate. You do not need an EV certificate. I've used ones from QuickSSL for this, as unlike some of the other cheap certificate providers they don't require the installation of an intermediate certificate on the server - that's a no-one for me.
For signing applications that's a different type of certificate altogether (kind of, it's still an X509 certificate, but the one you use for your web site is not one you can use to sign an application). You need an authenticode signing certificate from the likes of Verisign or Globalsign. These are a magnitude more expensive than a plain old SSL certificate and require you to be an incorporated company and produce those documents.