I know basic SQL/RDBMS and not the kind of detailed information a highly experienced DBA would know.
I need to know how much memory is consumed by a variable such as int, bigint, date time. I also need to know how much memory is consumed by a Varchar(50) column in two cases -
1] The Column is filled with strings of size 50
2] Column has all Null
The purpose behind this is to make estimates for ETL/data transfer.
I also want to know how to store SQL server result into a cache on disk and then retrieve the data from that cache, chunk by chunk (doing this due to memory related concerns). But, I'll make that another question.
In addition to the documentation linked in the comment, note that varchar storage depends on what data is actually entered.
From http://technet.microsoft.com/en-us/library/ms176089(v=sql.100).aspx:
The storage size is the actual length of data entered + 2 bytes.
Related
I've read up on this on MSDN forums and here and I'm still not clear. I think this is correct: Varchar(max) will be stored as a text datatype, so that has drawbacks. So lets say your field will reliably be under 8000 characters. Like a BusinessName field in my database table. In reality, a business name will probably always be under (pulling a number outta my hat) 500 characters. It seems like plenty of varchar fields that I run across fall well under the 8k character count.
So should I make that field a varchar(500) instead of varchar(8000)? From what I understand of SQL there's no difference between those two. So, to make life easy, I'd want to define all my varchar fields as varchar(8000). Does that have any drawbacks?
Related: Size of varchar columns (I didn't feel like this one answered my question).
One example where this can make a difference is that it can prevent a performance optimization that avoids adding row versioning information to tables with after triggers.
This is covered by Paul White here
The actual size of the data stored is immaterial – it is the potential
size that matters.
Similarly if using memory optimised tables since 2016 it has been possible to use LOB columns or combinations of column widths that could potentially exceed the inrow limit but with a penalty.
(Max) columns are always stored off-row. For other columns, if the data row size in the table definition can exceed 8,060 bytes, SQL Server pushes largest variable-length column(s) off-row. Again, it does not depend on amount of the data you store there.
This can have a large negative effect on memory consumption and performance
Another case where over declaring column widths can make a big difference is if the table will ever be processed using SSIS. The memory allocated for variable length (non BLOB) columns is fixed for each row in an execution tree and is per the columns' declared maximum length which can lead to inefficient usage of memory buffers (example). Whilst the SSIS package developer can declare a smaller column size than the source this analysis is best done up front and enforced there.
Back in the SQL Server engine itself a similar case is that when calculating the memory grant to allocate for SORT operations SQL Server assumes that varchar(x) columns will on average consume x/2 bytes.
If most of your varchar columns are fuller than that this can lead to the sort operations spilling to tempdb.
In your case if your varchar columns are declared as 8000 bytes but actually have contents much less than that your query will be allocated memory that it doesn't require which is obviously inefficient and can lead to waits for memory grants.
This is covered in Part 2 of SQL Workshops Webcast 1 downloadable from here or see below.
use tempdb;
CREATE TABLE T(
id INT IDENTITY(1,1) PRIMARY KEY,
number int,
name8000 VARCHAR(8000),
name500 VARCHAR(500))
INSERT INTO T
(number,name8000,name500)
SELECT number, name, name /*<--Same contents in both cols*/
FROM master..spt_values
SELECT id,name500
FROM T
ORDER BY number
SELECT id,name8000
FROM T
ORDER BY number
From a processing standpoint, it will not make a difference to use varchar(8000) vs varchar(500). It's more of a "good practice" kind of thing to define a maximum length that a field should hold and make your varchar that length. It's something that can be used to assist with data validation. For instance, making a state abbreviation be 2 characters or a postal/zip code as 5 or 9 characters. This used to be a more important distinction for when your data interacted with other systems or user interfaces where field length was critical (e.g. a mainframe flat file dataset), but nowadays I think it's more habit than anything else.
There are some disadvantages to large columns that are a bit less obvious and might catch you a little later:
All columns you use in an INDEX - must not exceed 900 bytes
All the columns in an ORDER BY clause may not exceed 8060 bytes. This is a bit difficult to grasp since this only applies to some columns. See SQL 2008 R2 Row size limit exceeded for details)
If the total row size exceeds 8060 bytes, you get a "page spill" for that row. This might affect performance (A page is an allocation unit in SQLServer and is fixed at 8000 bytes+some overhead. Exceeding this will not be severe, but it's noticable and you should try to avoid it if you easily can)
Many other internal datastructures, buffers and last-not-least your own varaibles and table-variables all need to mirror these sizes. With excessive sizes, excessive memory allocation can affect performance
As a general rule, try to be conservative with the column width. If it becomes a problem, you can easily expand it to fit the needs. If you notice memory issues later, shrinking a wide column later may become impossible without losing data and you won't know where to begin.
In your example of the business names, think about where you get to display them. Is there really space for 500 characters?? If not, there is little point in storing them as such. http://en.wikipedia.org/wiki/List_of_companies_of_the_United_States lists some company names and the max is about 50 characters. So I'd use 100 for the column max. Maybe more like 80.
Apart from best practices (BBlake's answer)
You get warnings about maximum row size (8060) bytes and index width (900 bytes) with DDL
DML will die if you exceed these limits
ANSI PADDING ON is the default so you could end up storing a wholeload of whitespace
Ideally you'd want to go smaller than that, down to a reasonably sized length (500 isn't reasonably sized) and make sure the client validation catches when the data is going to be too large and send a useful error.
While the varchar isn't actually going to reserve space in the database for the unused space, I recall versions of SQL Server having a snit about database rows being wider than some number of bytes (do not recall the exact count) and actually throwing out whatever data didn't fit. A certain number of those bytes were reserved for things internal to SQL Server.
Should I choose the smallest datatype possible, or if I am storing the value 1 for example, it doesn't matter what is the col datatype and the value will occupy the same memory size?
The question is also, cuz I will always have to convert it and play around in the application.
UPDATE
I think that varchar(1) and varchar(50) is the same memory size if value is "a", I thought it's the same with int and tinyint, according to the answers I understand it's not, is it?
Always choose the smallest data type possible. SQL can't guess what you want the maximum value to be, but it can optimize storage and performance once you tell it the data type.
To answer your update:
varchar does take up only as much space as you use and so you're right when you say that the character "a" will take up 1 byte (in latin encoding) no matter how large a varchar field you choose. That is not the case with any other type of field in SQL.
However, you will likely be sacrificing efficiency for space if you make everything a varchar field. If everything is a fixed-size field then SQL can do a simple constant-time multiplication to find your value (like an array). If you have varchar fields in there, then the only way to find out where you data is stored it to go through all the previous fields (like a linked list).
If you're beginning SQL then I advise just to stay away from varchar fields unless you expect to have fields that sometimes have very small amounts of text and sometimes very large amounts of text (like blog posts). It takes experience to know when to use variable length fields to the best effect and even I don't know most of the time.
It's a performance consideration particular to the design of your system. In general, the more data you can fit into a page of Sql Server data, the better the performance.
One page in Sql Server is 8k. Using tiny ints instead of ints will enable you to put more data into a single page but you have to consider whether or not it's worth it. If you're going to be serving up thousands of hits a minute, then yes. If this is a hobby project or something that just a few dozen users will ever see, then it doesn't matter.
The advantage is there but might not be significant unless you have lots of rows and performs los of operation. There'll be performance improvement and smaller storage.
Traditionally every bit saved on the page size would mean a little bit of speed improvement: narrower rows means more rows per page, which means less memory consumed and fewer IO requests, resulting in better speed. However, with SQL Server 2008 Page compression things start to get fuzzy. The compression algorithm may compress 4 byte ints with values under 255 on even less than a byte.
Row compression algorithms will store a 4 byte int on a single byte for values under 127 (int is signed), 2 bytes for values under 32768 and so on and so forth.
However, given that the nice compression features are only available on Enterprise Edition servers, it makes sense to keep the habit of using the smallest possible data type.
I've read up on this on MSDN forums and here and I'm still not clear. I think this is correct: Varchar(max) will be stored as a text datatype, so that has drawbacks. So lets say your field will reliably be under 8000 characters. Like a BusinessName field in my database table. In reality, a business name will probably always be under (pulling a number outta my hat) 500 characters. It seems like plenty of varchar fields that I run across fall well under the 8k character count.
So should I make that field a varchar(500) instead of varchar(8000)? From what I understand of SQL there's no difference between those two. So, to make life easy, I'd want to define all my varchar fields as varchar(8000). Does that have any drawbacks?
Related: Size of varchar columns (I didn't feel like this one answered my question).
One example where this can make a difference is that it can prevent a performance optimization that avoids adding row versioning information to tables with after triggers.
This is covered by Paul White here
The actual size of the data stored is immaterial – it is the potential
size that matters.
Similarly if using memory optimised tables since 2016 it has been possible to use LOB columns or combinations of column widths that could potentially exceed the inrow limit but with a penalty.
(Max) columns are always stored off-row. For other columns, if the data row size in the table definition can exceed 8,060 bytes, SQL Server pushes largest variable-length column(s) off-row. Again, it does not depend on amount of the data you store there.
This can have a large negative effect on memory consumption and performance
Another case where over declaring column widths can make a big difference is if the table will ever be processed using SSIS. The memory allocated for variable length (non BLOB) columns is fixed for each row in an execution tree and is per the columns' declared maximum length which can lead to inefficient usage of memory buffers (example). Whilst the SSIS package developer can declare a smaller column size than the source this analysis is best done up front and enforced there.
Back in the SQL Server engine itself a similar case is that when calculating the memory grant to allocate for SORT operations SQL Server assumes that varchar(x) columns will on average consume x/2 bytes.
If most of your varchar columns are fuller than that this can lead to the sort operations spilling to tempdb.
In your case if your varchar columns are declared as 8000 bytes but actually have contents much less than that your query will be allocated memory that it doesn't require which is obviously inefficient and can lead to waits for memory grants.
This is covered in Part 2 of SQL Workshops Webcast 1 downloadable from here or see below.
use tempdb;
CREATE TABLE T(
id INT IDENTITY(1,1) PRIMARY KEY,
number int,
name8000 VARCHAR(8000),
name500 VARCHAR(500))
INSERT INTO T
(number,name8000,name500)
SELECT number, name, name /*<--Same contents in both cols*/
FROM master..spt_values
SELECT id,name500
FROM T
ORDER BY number
SELECT id,name8000
FROM T
ORDER BY number
From a processing standpoint, it will not make a difference to use varchar(8000) vs varchar(500). It's more of a "good practice" kind of thing to define a maximum length that a field should hold and make your varchar that length. It's something that can be used to assist with data validation. For instance, making a state abbreviation be 2 characters or a postal/zip code as 5 or 9 characters. This used to be a more important distinction for when your data interacted with other systems or user interfaces where field length was critical (e.g. a mainframe flat file dataset), but nowadays I think it's more habit than anything else.
There are some disadvantages to large columns that are a bit less obvious and might catch you a little later:
All columns you use in an INDEX - must not exceed 900 bytes
All the columns in an ORDER BY clause may not exceed 8060 bytes. This is a bit difficult to grasp since this only applies to some columns. See SQL 2008 R2 Row size limit exceeded for details)
If the total row size exceeds 8060 bytes, you get a "page spill" for that row. This might affect performance (A page is an allocation unit in SQLServer and is fixed at 8000 bytes+some overhead. Exceeding this will not be severe, but it's noticable and you should try to avoid it if you easily can)
Many other internal datastructures, buffers and last-not-least your own varaibles and table-variables all need to mirror these sizes. With excessive sizes, excessive memory allocation can affect performance
As a general rule, try to be conservative with the column width. If it becomes a problem, you can easily expand it to fit the needs. If you notice memory issues later, shrinking a wide column later may become impossible without losing data and you won't know where to begin.
In your example of the business names, think about where you get to display them. Is there really space for 500 characters?? If not, there is little point in storing them as such. http://en.wikipedia.org/wiki/List_of_companies_of_the_United_States lists some company names and the max is about 50 characters. So I'd use 100 for the column max. Maybe more like 80.
Apart from best practices (BBlake's answer)
You get warnings about maximum row size (8060) bytes and index width (900 bytes) with DDL
DML will die if you exceed these limits
ANSI PADDING ON is the default so you could end up storing a wholeload of whitespace
Ideally you'd want to go smaller than that, down to a reasonably sized length (500 isn't reasonably sized) and make sure the client validation catches when the data is going to be too large and send a useful error.
While the varchar isn't actually going to reserve space in the database for the unused space, I recall versions of SQL Server having a snit about database rows being wider than some number of bytes (do not recall the exact count) and actually throwing out whatever data didn't fit. A certain number of those bytes were reserved for things internal to SQL Server.
I'm about to add a new column to my table with 500,000 existing rows. Is there any harm in choosing a large value for the varchar? How exactly are varchars allocated for existing rows? Does it take up a lot of disk space? How about memory effects during run time?
I'm looking for MySQL specific behavior details not general software design advises.
There's no harm in choosing a large value for a varchar field. Only the actual data will be stored, and MySQL doesn't allocate the full specified length for each record. It stores the actual length of the data along with the field, so it doesn't need to store any padding or allocate unused memory.
Depends on what you're doing. See the relevant documentation page for some of the details:
http://dev.mysql.com/doc/refman/5.0/en/char.html
The penalty in disk space isn't really any different than what you have for e.g. TEXT types, and from a performance perspective it MAY actually be faster.
The primary problem is the maximum row size. Note that the exact implications of this differ between storage engines. Consult the MySQL docs for your storage engine of choice for maximum row size information.
I should also add that there can be performance benefits to minimizing row size, but it really depends on your workload, indexing, and just how big the rows are, whether or not it will be meaningful for you.
MySQL VARCHAR fields store the contents, plus 2 bytes for length. So empty VARCHAR fields will use up space to mark their lengths.
Also, if this is the only VARCHAR field in your table, and your storage engine is MyISAM, it would force dynamic row format which may yield a performance hit (testing will confirm).
http://dev.mysql.com/doc/refman/5.0/en/column-count-limit.html
http://dev.mysql.com/doc/refman/5.0/en/dynamic-format.html
How are varchar columns handled internally by a database engine?
For a column defined as char(100), the DBMS allocates 100 contiguous bytes on the disk. However, for a column defined as varchar(100), that presumably isn't the case, since the whole point of varchar is to not allocate any more space than required to store the actual data value stored in the column. So, when a user updates a database row containing an empty varchar(100) column to a value consisting of 80 characters for instance, where does the space for that 80 characters get allocated from?
It seems that varchar columns must result in a fair amount of fragmentation of the actual database rows, at least in scenarios where column values are initially inserted as blank or NULL, and then updated later with actual values. Does this fragmentation result in degraded performance on database queries, as opposed to using char type values, where the space for the columns stored in the rows is allocated contiguously? Obviously using varchar results in less disk space than using char, but is there a performance hit when optimizing for query performance, especially for columns whose values are frequently updated after the initial insert?
You make a lot of assumptions in your question that aren't necessarily true.
The type of the a column in any DBMS tells you nothing at all about the nature of the storage of that data unless the documentation clearly tells you how the data is stored. IF that's not stated, you don't know how it is stored and the DBMS is free to change the storage mechanism from release to release.
In fact some databases store CHAR fields internally as VARCHAR, while others make a decision about how to the store the column based on the declared size of the column. Some database store VARCHAR with the other columns, some with BLOB data, and some implement other storage, Some databases always rewrite the entire row when a column is updated, others don't. Some pad VARCHARs to allow for limited future updating without relocating the storage.
The DBMS is responsible for figuring out how to store the data and return it to you in a speedy and consistent fashion. It always amazes me how many people to try out think the database, generally in advance of detecting any performance problem.
The data structures used inside a database engine is far more complex than you are giving it credit for! Yes, there are issues of fragmentation and issues where updating a varchar with a large value can cause a performance hit, however its difficult to explain /understand what the implications of those issues are without a fuller understanding of the datastructures involved.
For MS Sql server you might want to start with understanding pages - the fundamental unit of storage (see http://msdn.microsoft.com/en-us/library/ms190969.aspx)
In terms of the performance implications of fixes vs variable storage types on performance there are a number of points to consider:
Using variable length columns can improve performance as it allows more rows to fit on a single page, meaning fewer reads
Using variable length columns requires special offset values, and the maintenance of these values requires a slight overhead, however this extra overhead is generally neglible.
Another potential cost is the cost of increasing the size of a column when the page containing that row is nearly full
As you can see, the situation is rather complex - generally speaking however you can trust the database engine to be pretty good at dealing with variable data types and they should be the data type of choice when there may be a significant variance of the length of data held in a column.
At this point I'm also going to recommend the excellent book "Microsoft Sql Server 2008 Internals" for some more insight into how complex things like this really get!
The answer will depend on the specific DBMS. For Oracle, it is certainly possible to end up with fragmentation in the form of "chained rows", and that incurs a performance penalty. However, you can mitigate against that by pre-allocating some empty space in the table blocks to allow for some expansion due to updates. However, CHAR columns will typically make the table much bigger, which has its own impact on performance. CHAR also has other issues such as blank-padded comparisons which mean that, in Oracle, use of the CHAR datatype is almost never a good idea.
Your question is too general because different database engines will have different behavior. If you really need to know this, I suggest that you set up a benchmark to write a large number of records and time it. You would want enough records to take at least an hour to write.
As you suggested, it would be interesting to see what happens if you write insert all the records with an empty string ("") and then update them to have 100 characters that are reasonably random, not just 100 Xs.
If you try this with SQLITE and see no significant difference, then I think it unlikely that the larger database servers, with all the analysis and tuning that goes on, would be worse than SQLITE.
This is going to be completely database specific.
I do know that in Oracle, the database will reserve a certain percentage of each block for future updates (The PCTFREE parameter). For example, if PCTFREE is set to 25%, then a block will only be used for new data until it is 75% full. By doing that, room is left for rows to grow. If the row grows such that the 25% reserved space is completely used up, then you do end up with chained rows and a performance penalty. If you find that a table has a large number of chained rows, you can tune the PCTFREE for that table. If you have a table which will never have any updates at all, a PCTFREE of zero would make sense
In SQL Server varchar (except varchar(MAX)) is generally stored together with the rest of the row's data (on the same page if the row's data is < 8KB and on the same extent if it is < 64KB. Only the large data types such as TEXT, NTEXT, IMAGE, VARHCAR(MAX), NVARHCAR(MAX), XML and VARBINARY(MAX) are stored seperately.