We have trouble figuring out how to connect the GPS to the satelite. We are using the TinyGPS library at the moment. The Arduino is sending signals, but isn't receiving any response from the satelite itself. Any advice or help would be appreciated.
Using:
Arduino Uno
XBee pro shield
XBee GPS Bee
Arduino Code:
#include <SoftwareSerial.h>
#include <TinyGPS.h>
/* This sample code demonstrates the normal use of a TinyGPS object.
It requires the use of SoftwareSerial, and assumes that you have a
4800-baud serial GPS device hooked up on pins 4(rx) and 3(tx).
*/
TinyGPS gps;
SoftwareSerial ss(1, 0);
static void smartdelay(unsigned long ms);
static void print_float(float val, float invalid, int len, int prec);
static void print_int(unsigned long val, unsigned long invalid, int len);
static void print_date(TinyGPS &gps);
static void print_str(const char *str, int len);
void setup()
{
Serial.begin(9600);
Serial.print("Testing TinyGPS library v. "); Serial.println(TinyGPS::library_version());
Serial.println("by Mikal Hart");
Serial.println();
Serial.println("Sats HDOP Latitude Longitude Fix Date Time Date Alt Course Speed Card Distance Course Card Chars Sentences Checksum");
Serial.println(" (deg) (deg) Age Age (m) --- from GPS ---- ---- to London ---- RX RX Fail");
Serial.println("-------------------------------------------------------------------------------------------------------------------------------------");
ss.begin(9600);
}
void loop()
{
float flat, flon;
unsigned long age, date, time, chars = 0;
unsigned short sentences = 0, failed = 0;
static const double LONDON_LAT = 51.508131, LONDON_LON = -0.128002;
print_int(gps.satellites(), TinyGPS::GPS_INVALID_SATELLITES, 5);
print_int(gps.hdop(), TinyGPS::GPS_INVALID_HDOP, 5);
gps.f_get_position(&flat, &flon, &age);
print_float(flat, TinyGPS::GPS_INVALID_F_ANGLE, 10, 6);
print_float(flon, TinyGPS::GPS_INVALID_F_ANGLE, 11, 6);
print_int(age, TinyGPS::GPS_INVALID_AGE, 5);
print_date(gps);
print_float(gps.f_altitude(), TinyGPS::GPS_INVALID_F_ALTITUDE, 7, 2);
print_float(gps.f_course(), TinyGPS::GPS_INVALID_F_ANGLE, 7, 2);
print_float(gps.f_speed_kmph(), TinyGPS::GPS_INVALID_F_SPEED, 6, 2);
print_str(gps.f_course() == TinyGPS::GPS_INVALID_F_ANGLE ? "*** " : TinyGPS::cardinal(gps.f_course()), 6);
print_int(flat == TinyGPS::GPS_INVALID_F_ANGLE ? 0xFFFFFFFF : (unsigned long)TinyGPS::distance_between(flat, flon, LONDON_LAT, LONDON_LON) / 1000, 0xFFFFFFFF, 9);
print_float(flat == TinyGPS::GPS_INVALID_F_ANGLE ? TinyGPS::GPS_INVALID_F_ANGLE : TinyGPS::course_to(flat, flon, LONDON_LAT, LONDON_LON), TinyGPS::GPS_INVALID_F_ANGLE, 7, 2);
print_str(flat == TinyGPS::GPS_INVALID_F_ANGLE ? "*** " : TinyGPS::cardinal(TinyGPS::course_to(flat, flon, LONDON_LAT, LONDON_LON)), 6);
gps.stats(&chars, &sentences, &failed);
print_int(chars, 0xFFFFFFFF, 6);
print_int(sentences, 0xFFFFFFFF, 10);
print_int(failed, 0xFFFFFFFF, 9);
Serial.println();
smartdelay(1000);
}
static void smartdelay(unsigned long ms)
{
unsigned long start = millis();
do
{
while (ss.available())
gps.encode(ss.read());
} while (millis() - start < ms);
}
static void print_float(float val, float invalid, int len, int prec)
{
if (val == invalid)
{
while (len-- > 1)
Serial.print('*');
Serial.print(' ');
}
else
{
Serial.print(val, prec);
int vi = abs((int)val);
int flen = prec + (val < 0.0 ? 2 : 1); // . and -
flen += vi >= 1000 ? 4 : vi >= 100 ? 3 : vi >= 10 ? 2 : 1;
for (int i=flen; i<len; ++i)
Serial.print(' ');
}
smartdelay(0);
}
static void print_int(unsigned long val, unsigned long invalid, int len)
{
char sz[32];
if (val == invalid)
strcpy(sz, "*******");
else
sprintf(sz, "%ld", val);
sz[len] = 0;
for (int i=strlen(sz); i<len; ++i)
sz[i] = ' ';
if (len > 0)
sz[len-1] = ' ';
Serial.print(sz);
smartdelay(0);
}
static void print_date(TinyGPS &gps)
{
int year;
byte month, day, hour, minute, second, hundredths;
unsigned long age;
gps.crack_datetime(&year, &month, &day, &hour, &minute, &second, &hundredths, &age);
if (age == TinyGPS::GPS_INVALID_AGE)
Serial.print("********** ******** ");
else
{
char sz[32];
sprintf(sz, "%02d/%02d/%02d %02d:%02d:%02d ",
month, day, year, hour, minute, second);
Serial.print(sz);
}
print_int(age, TinyGPS::GPS_INVALID_AGE, 5);
smartdelay(0);
}
static void print_str(const char *str, int len)
{
int slen = strlen(str);
for (int i=0; i<len; ++i)
Serial.print(i<slen ? str[i] : ' ');
smartdelay(0);
}
Ensure that GPS module connected to D0 (TX wire) and (D1 RX wire).
Check GPS module default settings for serial. Probably you should try ss.begin(4800);or other default connection speed.
Ensure that smartdelay code is executing at least once(put debug string there). Probably you've got unhandled exception in loop() function which prevents from read any data from GPS module.
Related
First, I apologize for my mediocre English, hello I'm doing a project for college where I need to use a GY-GPS6MV2 gps module and using this module I need to use an enc28j60 ethernet module to save the gps data on a web page and later use a api. I was using the code below but I didn't get any data. Initially I used only the code related to the ethernet module so that later I could add the gps code.
#include <SoftwareSerial.h>
#include <TinyGPS.h>
#include <UIPEthernet.h>
EthernetServer server = EthernetServer(80);
SoftwareSerial serial1(6, 7); // RX, TX
TinyGPS gps1;
void setup() {
serial1.begin(9600);
Serial.begin(9600);
uint8_t mac[6] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05};
IPAddress myIP(192, 168, 0, 200);
Ethernet.begin(mac, myIP);
server.begin();
Serial.println("GPS Animal Tracker...");
}
void loop() {
bool recebido = false;
while (serial1.available()) {
char cIn = serial1.read();
recebido = gps1.encode(cIn);
}
if (recebido) {
Serial.println("----------------------------------------");
long latitude, longitude;
unsigned long idadeInfo;
gps1.get_position(&latitude, &longitude, &idadeInfo);
if (latitude != TinyGPS::GPS_INVALID_F_ANGLE) {
Serial.print("Latitude: ");
Serial.println(float(latitude) / 100000, 6);
}
if (longitude != TinyGPS::GPS_INVALID_F_ANGLE) {
Serial.print("Longitude: ");
Serial.println(float(longitude) / 100000, 6);
}
if (idadeInfo != TinyGPS::GPS_INVALID_AGE) {
Serial.print("Idade da Informacao (ms): ");
Serial.println(idadeInfo);
}
int ano;
byte mes, dia, hora, minuto, segundo, centesimo;
gps1.crack_datetime(&ano, &mes, &dia, &hora, &minuto, &segundo, &idadeInfo);
Serial.print("Data (GMT): ");
Serial.print(dia);
Serial.print("/");
Serial.print(mes);
Serial.print("/");
Serial.println(ano);
Serial.print("Horario (GMT): ");
Serial.print(hora);
Serial.print(":");
Serial.print(minuto);
Serial.print(":");
size_t size;
if (EthernetClient client = server.available())
{
while ((size = client.available()) > 0)
{
uint8_t* msg = (uint8_t*)malloc(size);
size = client.read(msg, size);
Serial.write(msg, size);
free(msg);
}
client.println("<h1>ModuloEletronica</h1>");
client.print("<h1>Latitude</h1>");
//client.print((float(latitude) / 100000, 6));
client.println();
client.print ("<h1>Longitude</h1>");
//client.print ((float(longitude) / 100000, 6));
client.println();
client.stop();
}
Serial.print(segundo);
}
I encountered the following error
gr::log :WARN: tpb_thread_body - asynchronous message buffer overflowing, dropping message
Out of serendipity, I ran into this GNU Radio presentation on
Youtube.
The presenter mentioned an OOT block he called "buffer" that is capable of eliminating the "buffer overflowing" error. Apparently, this block plays with different sample rates and the so-called "circular buffers". I haven't worked with circular buffers myself. Any ideas on circular buffers or any hints on how to build this buffer block are welcome.
EDIT
Below is the flowgraph that generates the error. As it was suggested in the comments, the culprits could be the message processing blocks (red-circled) namely generateCADU (for generating standard CCSDS frames) and processCADU (for extracting CADUs from a data stream).
The implementation file of the generateCADU block is given below
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gnuradio/io_signature.h>
#include "generateCADU_impl.h"
#include "fec/ReedSolomon/ReedSolomon.h"
#include "fec/Scrambler/Scrambler.h"
namespace gr {
namespace ccsds {
generateCADU::sptr
generateCADU::make(int frameLength,std::string sync, int scramble, int rs, int intDepth)
{
return gnuradio::get_initial_sptr
(new generateCADU_impl(frameLength, sync, scramble, rs, intDepth));
}
/*
* The private constructor
*/
generateCADU_impl::generateCADU_impl(int frameLength,std::string sync, int scramble, int rs, int intDepth)
: gr::sync_block("generateCADU",
gr::io_signature::make(1, 1, sizeof(unsigned char)),
gr::io_signature::make(0, 0, 0)),
d_frameLength(frameLength),d_scramble(scramble == 1),d_rs(rs >= 1), d_basis(rs >= 2), d_intDepth(intDepth)
{
set_output_multiple(d_frameLength);
//Registering output port
message_port_register_out(pmt::mp("out"));
d_sync = parse_string(sync);
}
/*
* Our virtual destructor.
*/
generateCADU_impl::~generateCADU_impl()
{
}
unsigned char
generateCADU_impl::parse_hex(char c)
{
if ('0' <= c && c <= '9') return c - '0';
if ('A' <= c && c <= 'F') return c - 'A' + 10;
if ('a' <= c && c <= 'f') return c - 'a' + 10;
std::abort();
}
std::vector<unsigned char>
generateCADU_impl::parse_string(const std::string & s)
{
if (s.size() % 2 != 0) std::abort();
std::vector<unsigned char> result(s.size() / 2);
for (std::size_t i = 0; i != s.size() / 2; ++i)
result[i] = 16 * parse_hex(s[2 * i]) + parse_hex(s[2 * i + 1]);
return result;
}
int
generateCADU_impl::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const unsigned char *in = (const unsigned char *) input_items[0];
//Reed-Solomon and Scrambler objects
ReedSolomon RS(16,d_intDepth,d_basis);// False = conventional, True = dual-basis
Scrambler S;
//Buffers
unsigned char *frameBuffer1 = (unsigned char*)malloc(d_frameLength*sizeof(unsigned char));
std::vector<unsigned char> frameBuffer2;
//The work function engine
for(int i = 0; (i + d_frameLength) < noutput_items; i += d_frameLength)
{
//Copying data from input stream
memcpy(frameBuffer1,in + i + d_frameLength,d_frameLength);
//Copying frame into std::vector buffer
frameBuffer2.insert(frameBuffer2.begin(),frameBuffer1, frameBuffer1 + d_frameLength);
//Optional scrambling and Reed-Solomon
if (d_rs) RS.Encode_RS(frameBuffer2);
if (d_scramble) S.Scramble(frameBuffer2);
//Insert sync word
frameBuffer2.insert(frameBuffer2.begin(), d_sync.begin(), d_sync.end());
//Transmitting PDU
pmt::pmt_t pdu(pmt::cons(pmt::PMT_NIL,pmt::make_blob(frameBuffer2.data(),frameBuffer2.size())));
message_port_pub(pmt::mp("out"), pdu);
//Clear buffer
frameBuffer2.clear();
}
// Tell runtime system how many output items we produced.
return noutput_items;
}
} /* namespace ccsds */
} /* namespace gr */
And here is the processCADU block. This block uses tags generated by the synchronizeCADU (which is simply a wrapper for the correlate_access_tag block) to extract CADUs
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gnuradio/io_signature.h>
#include "processCADU_impl.h"
#include "fec/ReedSolomon/ReedSolomon.h"
#include "fec/Scrambler/Scrambler.h"
namespace gr {
namespace ccsds {
processCADU::sptr
processCADU::make(int frameLength, int scramble, int rs, int intDepth, std::string tagName)
{
return gnuradio::get_initial_sptr
(new processCADU_impl(frameLength, scramble, rs, intDepth, tagName));
}
/*
* The private constructor
*/
processCADU_impl::processCADU_impl(int frameLength, int scramble, int rs, int intDepth, std::string tagName)
: gr::sync_block("processCADU",
gr::io_signature::make(1, 1, sizeof(unsigned char)),
gr::io_signature::make(0, 0, 0)),
d_frameLength(frameLength),d_scramble(scramble == 1),d_rs(rs >= 1), d_basis(rs >= 2), d_intDepth(intDepth)
{
//Multiple input
set_output_multiple(d_frameLength * 8);
//Registering output port
message_port_register_out(pmt::mp("out"));
if (d_rs) d_frameLength += 32 * d_intDepth;
//SEtting tag name
key = pmt::mp(tagName);
}
/*
* Our virtual destructor.
*/
processCADU_impl::~processCADU_impl()
{
delete d_pack;
}
int
processCADU_impl::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const unsigned char *in = (const unsigned char *) input_items[0];
unsigned char *out = (unsigned char *) output_items[0];
void *msg_data = NULL;
unsigned char frame_data[d_frameLength];
unsigned char frame_len = 0;
std::vector<unsigned char> frameBuffer;
//Reed-Solomon and Scrambler objects
ReedSolomon RS(16,d_intDepth,d_basis);// False = conventional, True = dual-basis
std::vector<int> errors;//errors.push_back(0);
Scrambler S;
d_tags.clear();
d_pack = new blocks::kernel::pack_k_bits(8);
this->get_tags_in_window(d_tags, 0, 0, noutput_items,key);
for(d_tags_itr = d_tags.begin(); d_tags_itr != d_tags.end(); d_tags_itr++) {
// Check that we have enough data for a full frame
if ((d_tags_itr->offset - this->nitems_read(0)) > (noutput_items - (d_frameLength) * 8))
{
return (d_tags_itr->offset - this->nitems_read(0) - 1);
}
//Pack bits into bytes
d_pack->pack(frame_data, &in[d_tags_itr->offset - this->nitems_read(0)], d_frameLength);
//Copying frame into std::vector buffer
frameBuffer.insert(frameBuffer.begin(),frame_data, frame_data + d_frameLength);
//Optional scrambling and Reed-Solomon
if (d_scramble) S.Scramble(frameBuffer);
//if (d_rs) RS.Decode_RS(frameBuffer,errors);
//If there is Reed-Solomon decoding
if(d_rs)
{
RS.Decode_RS(frameBuffer,errors);
if (RS.Success(errors)) // Success
{
//std::cout << "Success" << std::endl;
pmt::pmt_t pdu(pmt::cons(pmt::PMT_NIL,pmt::make_blob(frameBuffer.data(),frameBuffer.size())));
message_port_pub(pmt::mp("out"), pdu);
/*for(int i=0; i < errors.size(); i++)
{
//std::cout << "Number of Errors : " << errors.at(i) << std::endl << std::endl;
}*/
}
else // Failure
{
std::cout << "RS failure" << std::endl;
}
}
else{
pmt::pmt_t pdu(pmt::cons(pmt::PMT_NIL,pmt::make_blob(frameBuffer.data(),frameBuffer.size())));
message_port_pub(pmt::mp("out"), pdu);
}
//Clear buffers
frameBuffer.clear();
errors.clear();
}
// Tell runtime system how many output items we produced.
return noutput_items;
}
} /* namespace ccsds */
} /* namespace gr */
Regards,
M
Thanks to #MarcusMüller suggestion, using the tagged_stream paradigma as opposed to PDUs solved the problem. I was able to transmit 47 terabytes of data without any problems. Below is the code for the newly implemented block.
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gnuradio/io_signature.h>
#include "genCADU_impl.h"
namespace gr {
namespace ccsds {
genCADU::sptr
genCADU::make(int frameLength,std::string sync, int scramble, int rs, int intDepth, std::string len_tag_key)
{
return gnuradio::get_initial_sptr
(new genCADU_impl(frameLength, sync, scramble, rs, intDepth, len_tag_key));
}
/*
* The private constructor
*/
genCADU_impl::genCADU_impl(int frameLength,std::string sync, int scramble, int rs, int intDepth, std::string len_tag_key)
: gr::tagged_stream_block("genCADU",
gr::io_signature::make(1, 1, sizeof(unsigned char)),
gr::io_signature::make(1, 1, sizeof(unsigned char)),len_tag_key),
d_frameLength(frameLength),d_scramble(scramble == 1),d_rs(rs >= 1), d_basis(rs >= 2), d_intDepth(intDepth)
{
//Synchronization pattern
d_sync = parse_string(sync);
//Reed-Solomon and Scrambler objects
RS = new ReedSolomon(16,d_intDepth,d_basis);// False = conventional, True = dual-basis
S = new Scrambler();
}
/*
* Our virtual destructor.
*/
genCADU_impl::~genCADU_impl()
{
delete RS;
delete S;
}
int
genCADU_impl::calculate_output_stream_length(const gr_vector_int &ninput_items)
{
int noutput_items = (d_rs) ? d_frameLength + 32*d_intDepth + d_sync.size() : d_frameLength + d_sync.size();
return noutput_items ;
}
unsigned char
genCADU_impl::parse_hex(char c)
{
if ('0' <= c && c <= '9') return c - '0';
if ('A' <= c && c <= 'F') return c - 'A' + 10;
if ('a' <= c && c <= 'f') return c - 'a' + 10;
std::abort();
}
std::vector<unsigned char>
genCADU_impl::parse_string(const std::string & s)
{
if (s.size() % 2 != 0) std::abort();
std::vector<unsigned char> result(s.size() / 2);
for (std::size_t i = 0; i != s.size() / 2; ++i)
result[i] = 16 * parse_hex(s[2 * i]) + parse_hex(s[2 * i + 1]);
return result;
}
int
genCADU_impl::work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const unsigned char *in = (const unsigned char *) input_items[0];
unsigned char *out = (unsigned char *) output_items[0];
int total_len;
//Copy pdu from circular buffer to local buffer
buffer.insert(buffer.end(), in, in + d_frameLength);
//Optional scrambling and Reed-Solomon. TO DO: Turbo and LDPC
if (d_rs) RS->Encode_RS(buffer);
if (d_scramble) S->Scramble(buffer);
//Insert sync word
buffer.insert(buffer.begin(), d_sync.begin(), d_sync.end());
//Copy from local buffer to circular buffer
std::copy(buffer.begin(),buffer.end(),out);
//Clear the local buffer
total_len = buffer.size();
buffer.clear();
// Tell runtime system how many output items we produced.
return total_len;
}
} /* namespace ccsds */
} /* namespace gr */
Regards,
M.
On my Arduino Mega 2560, I'm trying to run a motor that turns a 20-vial container (accepting int input 1-20) while regulating temperature via PID of a separate cooler. I am generally new to this field of technology so bear with me. I also have an interrupt set up for an encoder to keep track of vial position.
The void serialEvent() and void loop() are the most important portions to look at, but I decided to put the rest of the code in there just in case you needed to see it.
#include <PID_v1.h>
#include <SPI.h>
#include <TMC26XStepper.h>
#define COOL_INPUT 0
#define PIN_OUTPUT 9
TMC26XStepper tmc26XStepper = TMC26XStepper(200,5,7,6,500);
int step = 6;
int value;
int i;
char junk = ' ';
volatile long enc_count = 0;
const byte interruptPinA = 2;
const byte interruptPinB = 3;
//Define Variables we'll be connecting to
int outMax = 255;
int outMin = -145;
double Setpoint, Input, Output;
double heatInput, heatOutput, originalInput;
//Specify the links and initial tuning parameters
// AGGRESSIVE VALUES (to get to 4 deg C)
double aggKp=8.0, aggKi=3.0, aggKd=0.15;
// CONSERVATIVE VALUES (to hover around 4 deg C)
double consKp=2.5, consKi = 0.0, consKd = 1.0;
PID myPID(&Input, &Output, &Setpoint, aggKp, aggKi, aggKd, REVERSE);
void setup()
{
pinMode(step, OUTPUT);
pinMode(interruptPinA, INPUT_PULLUP);
pinMode(interruptPinB, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(interruptPinA), encoder_isr, CHANGE);
attachInterrupt(digitalPinToInterrupt(interruptPinB), encoder_isr, CHANGE);
//initialize the variables we're linked to
Input = (5.0*analogRead(COOL_INPUT)*100.0) / 1024;
Setpoint = 10.75;
myPID.SetOutputLimits(outMin, outMax);
//turn the PID on
myPID.SetMode(AUTOMATIC);
Serial.begin(115200);
tmc26XStepper.setSpreadCycleChopper(2,24,8,6,0);
tmc26XStepper.setMicrosteps(32);
tmc26XStepper.setStallGuardThreshold(4,0);
Serial.println("...started...");
tmc26XStepper.start();
Serial.flush();
Serial.println("Enter vial numbers 1-20");
}
void loop() {
Input = (5.0*analogRead(COOL_INPUT)*100.0) / 1024;
// A BUNCH OF CODE FOR TEMP REGULATION
Serial.println(Input);
delay(150);
}
void serialEvent() {
while (Serial.available() == 0) {}
i = Serial.parseInt();
Serial.print("position: ");
Serial.print(i);
Serial.print(" ");
while (Serial.available() > 0) {
junk = Serial.read();
}
if (i == 1) {
value = 0;
} else {
int num = i - 1;
value = num * 72;
}
while (enc_count != value) {
digitalWrite(6, HIGH);
delayMicroseconds(100);
digitalWrite(6, LOW);
delayMicroseconds(100);
if (enc_count == 1440) {
enc_count = 0;
}
}
Serial.println(enc_count);
}
// INFO FOR ENCODER
void encoder_isr() {
static int8_t lookup_table[] = {0,-1,1,0,1,0,0,-1,-1,0,0,1,0,1,-1,0};
static uint8_t enc_val = 0;
enc_val = enc_val << 2;
enc_val = enc_val | ((PIND & 0b1100) >> 2);
enc_count = enc_count + lookup_table[enc_val & 0b1111];
}
So, originally I had the two processes tested separately (vial position + encoder, then temperature regulation) and everything did exactly as it was supposed to. Now, I fused the code together and stored the vial position entry in the serialEvent() method to keep the temperature reading continuous and the vial position entry available for whenever I decided to provide input. However, when I put in a value, the program stops all together. I am able to see the number I entered (position: 5), but the Serial.println(enc_count) never gets printed. On top of the that, the temperature readings stop displaying readings.
Any thoughts? Need more information?
I'm working on a tracking project. I'm using TinyDuino Processor Bd together with TinyGPS shield. Just to test the GPS shield, I have tried all possible codes using the libraries TinyGPS and TinyGPS++. they all failed and gave me an output of 0's or uninterpretable output. here are some codes I tried with there output.
Code 1:
#include
static const int GPS_ONOFFPin = A3;
static const int GPS_SYSONPin = A2;
static const int GPS_RXPin = A1;
static const int GPS_TXPin = A0;
static const int GPSBaud = 9600;
static const int chipSelect = 10;
// The GPS connection is attached with a software serial port
SoftwareSerial Gps_serial(GPS_RXPin, GPS_TXPin);
int led = 13;
void setup()
{
// Init the GPS Module to wake mode
pinMode(GPS_SYSONPin, INPUT);
pinMode(GPS_ONOFFPin, OUTPUT);
digitalWrite( GPS_ONOFFPin, LOW );
delay(5);
if( digitalRead( GPS_SYSONPin ) == LOW )
{
// Need to wake the module
digitalWrite( GPS_ONOFFPin, HIGH );
delay(5);
digitalWrite( GPS_ONOFFPin, LOW );
}
// Open serial communications and wait for port to open:
Serial.begin(9600);
pinMode(led, OUTPUT);
Gps_serial.begin(9600);
}
void loop()
{
if (Gps_serial.available())
Serial.write(Gps_serial.read());
}
Second Code:
#include
#include
/* This sample code demonstrates the normal use of a TinyGPS object.
It requires the use of SoftwareSerial, and assumes that you have a
4800-baud serial GPS device hooked up on pins 4(rx) and 3(tx).
*/
TinyGPS gps;
SoftwareSerial ss(4, 3);
static void smartdelay(unsigned long ms);
static void print_float(float val, float invalid, int len, int prec);
static void print_int(unsigned long val, unsigned long invalid, int len);
static void print_date(TinyGPS &gps);
static void print_str(const char *str, int len);
void setup()
{
Serial.begin(115200);
Serial.print("Testing TinyGPS library v. ");
Serial.println(TinyGPS::library_version());
Serial.println("by Mikal Hart");
Serial.println();
Serial.println("Sats HDOP Latitude Longitude Fix Date Time
Date Alt Course Speed Card Distance Course Card Chars Sentences
Checksum");
Serial.println(" (deg) (deg) Age
Age (m) --- from GPS ---- ---- to London ---- RX RX
Fail");
Serial.println("--------------------------------------------------------
--------------------------------------------------------------------------
---");
ss.begin(4800);
}
void loop()
{
float flat, flon;
unsigned long age, date, time, chars = 0;
unsigned short sentences = 0, failed = 0;
static const double LONDON_LAT = 51.508131, LONDON_LON = -0.128002;
print_int(gps.satellites(), TinyGPS::GPS_INVALID_SATELLITES, 5);
print_int(gps.hdop(), TinyGPS::GPS_INVALID_HDOP, 5);
gps.f_get_position(&flat, &flon, &age);
print_float(flat, TinyGPS::GPS_INVALID_F_ANGLE, 10, 6);
print_float(flon, TinyGPS::GPS_INVALID_F_ANGLE, 11, 6);
print_int(age, TinyGPS::GPS_INVALID_AGE, 5);
print_date(gps);
print_float(gps.f_altitude(), TinyGPS::GPS_INVALID_F_ALTITUDE, 7, 2);
print_float(gps.f_course(), TinyGPS::GPS_INVALID_F_ANGLE, 7, 2);
print_float(gps.f_speed_kmph(), TinyGPS::GPS_INVALID_F_SPEED, 6, 2);
print_str(gps.f_course() == TinyGPS::GPS_INVALID_F_ANGLE ? "*** " : TinyGPS::cardinal(gps.f_course()), 6);
print_int(flat == TinyGPS::GPS_INVALID_F_ANGLE ? 0xFFFFFFFF : (unsigned long)TinyGPS::distance_between(flat, flon, LONDON_LAT, LONDON_LON) / 1000, 0xFFFFFFFF, 9);
print_float(flat == TinyGPS::GPS_INVALID_F_ANGLE ? TinyGPS::GPS_INVALID_F_ANGLE : TinyGPS::course_to(flat, flon, LONDON_LAT, LONDON_LON), TinyGPS::GPS_INVALID_F_ANGLE, 7, 2);
print_str(flat == TinyGPS::GPS_INVALID_F_ANGLE ? "*** " : TinyGPS::cardinal(TinyGPS::course_to(flat, flon, LONDON_LAT, LONDON_LON)), 6);
gps.stats(&chars, &sentences, &failed);
print_int(chars, 0xFFFFFFFF, 6);
print_int(sentences, 0xFFFFFFFF, 10);
print_int(failed, 0xFFFFFFFF, 9);
Serial.println();
smartdelay(1000);
}
static void smartdelay(unsigned long ms)
{
unsigned long start = millis();
do
{
while (ss.available())
gps.encode(ss.read());
} while (millis() - start < ms);
}
static void print_float(float val, float invalid, int len, int prec)
{
if (val == invalid)
{
while (len-- > 1)
Serial.print('*');
Serial.print(' ');
}
else
{
Serial.print(val, prec);
int vi = abs((int)val);
int flen = prec + (val < 0.0 ? 2 : 1); // . and -
flen += vi >= 1000 ? 4 : vi >= 100 ? 3 : vi >= 10 ? 2 : 1;
for (int i=flen; i<len; ++i)
Serial.print(' ');
}
smartdelay(0);
}
static void print_int(unsigned long val, unsigned long invalid, int len)
{
char sz[32];
if (val == invalid)
strcpy(sz, "*******");
else
sprintf(sz, "%ld", val);
sz[len] = 0;
for (int i=strlen(sz); i<len; ++i)
sz[i] = ' ';
if (len > 0)
sz[len-1] = ' ';
Serial.print(sz);
smartdelay(0);
}
static void print_date(TinyGPS &gps)
{
int year;
byte month, day, hour, minute, second, hundredths;
unsigned long age;
gps.crack_datetime(&year, &month, &day, &hour, &minute, &second, &hundredths, &age);
if (age == TinyGPS::GPS_INVALID_AGE)
Serial.print("********** ******** ");
else
{
char sz[32];
sprintf(sz, "%02d/%02d/%02d %02d:%02d:%02d ",
month, day, year, hour, minute, second);
Serial.print(sz);
}
print_int(age, TinyGPS::GPS_INVALID_AGE, 5);
smartdelay(0);
}
static void print_str(const char *str, int len)
{
int slen = strlen(str);
for (int i=0; i<len; ++i)
Serial.print(i<slen ? str[i] : ' ');
smartdelay(0);
}
Code 1 confirms that the GPS device is working on A0/A1 at 9600 baud. The /dev/cu.usbserial-DN00CT3C window shows good NMEA sentences being echoed. But it doesn't have good satellite reception... all the fields are zero value or empty.
Code 2 shows that the TinyGPS example is not receiving any characters. That's because it's trying to use SoftwareSerial on pins 4 & 3. Change it to
SoftwareSerial ss( A1, A0 );
You may also be interested in a more efficient library, NeoGPS. It can be configured to handle only the messages and fields that you use. Everything else is ignored, saving RAM and processing time.
The GPS TX pin goes to the Arduino RX piN and likewise, the GPS RX pin goes to the Arduino TX pin. For the Second code, the GPS Baudrate is given as 4800 in description. try with baudrate of 9600 in both serial.begin and ss.begin.
You probably have to be outside, or at least near some windows for the GPS device to receive from the satellites. It could take 15 minutes for the first fix to happen.
#include <SoftwareSerial.h>
#include <TinyGPS.h>
TinyGPS gps;
SoftwareSerial ss(3,4);
static void smartdelay(unsigned long ms);
static void print_float(float val, float invalid, int len, int prec);
static void print_int(unsigned long val, unsigned long invalid, int len);
static void print_date(TinyGPS &gps);
void setup()
{
Serial.begin(9600);
ss.begin(9600);
}
void loop()
{
float flat, flon;
unsigned short sentences = 0, failed = 0;
gps.f_get_position(&flat, &flon);
Serial.print("LATITUDE: ");
print_float(flat, TinyGPS::GPS_INVALID_F_ANGLE, 10, 6);
Serial.println(" ");
Serial.print("LONGITUDE: ");
print_float(flon, TinyGPS::GPS_INVALID_F_ANGLE, 11, 6);
Serial.println(" ");
Serial.print("altitude: ");
print_float(gps.f_altitude(), TinyGPS::GPS_INVALID_F_ALTITUDE, 7, 2);
Serial.println(" ");
Serial.print("COURSE:");
print_float(gps.f_course(), TinyGPS::GPS_INVALID_F_ANGLE, 7, 2);
Serial.println("");
Serial.print("DIRECTION: ");
int d;
print_str(gps.f_course() == TinyGPS::GPS_INVALID_F_ANGLE ? "*** " : TinyGPS::cardinal(gps.f_course()), 6);
d=gps.f_course();
Serial.println();
Serial.println();
smartdelay(1000);
}
static void smartdelay(unsigned long ms)
{
unsigned long start = millis();
do
{
while (ss.available())
int val = gps.encode(ss.read());
} while (millis() - start < ms);
}
static void print_float(float val, float invalid, int len, int prec)
{
if (val == invalid)
{
while (len-- > 1)
Serial.print('*');
Serial.print(' ');
}
smartdelay(0);
}
static void print_str(const char *str, int len)
{
int slen = strlen(str);
for (int i=0; i<len; ++i)
Serial.print(i<slen ? str[i] : ' ');
smartdelay(0);
}
I want to use libusb library for writing some test applications for USB.
Can any one please suggest how to set control transfers using usb_control_msg call?
I am getting bad descriptor error while running the following code.
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include "usb.h"
static int vendor_id;
static int product_id;
typedef struct{
int requesttype;
int request;
int value;
int index;
char *bytes;
int size;
int timeout;
}ctrlmsg_param;
void print_endpoint(struct usb_endpoint_descriptor *endpoint)
{
printf("=====End point Information====\n");
printf("bEndpointAddress: %x\n", endpoint->bEndpointAddress);
printf("bmAttributes: %x\n", endpoint->bmAttributes);
printf("wMaxPacketSize: %d\n", endpoint->wMaxPacketSize);
printf("bInterval: %d\n", endpoint->bInterval);
printf("bRefresh: %d\n", endpoint->bRefresh);
printf("bSynchAddress: %d\n", endpoint->bSynchAddress);
}
void print_altsetting(struct usb_interface_descriptor *interface)
{
int i;
printf("\n=====Alternate Setting Information====\n");
printf("bInterfaceNumber: %d\n", interface->bInterfaceNumber);
printf("bAlternateSetting: %d\n", interface->bAlternateSetting);
printf("bNumEndpoints: %d\n", interface->bNumEndpoints);
printf("bInterfaceClass: %d\n", interface->bInterfaceClass);
printf("bInterfaceSubClass: %d\n", interface->bInterfaceSubClass);
printf("bInterfaceProtocol: %d\n", interface->bInterfaceProtocol);
printf("iInterface: %d\n", interface->iInterface);
for (i = 0; i < interface->bNumEndpoints; i++)
print_endpoint(&interface->endpoint[i]);
}
void print_interface(struct usb_interface *interface)
{
int i;
for (i = 0; i < interface->num_altsetting; i++)
print_altsetting(&interface->altsetting[i]);
}
void print_configuration(struct usb_config_descriptor *config)
{
int i;
printf("=====Configuration Information====\n");
printf("wTotalLength: %d\n", config->wTotalLength);
printf("bNumInterfaces: %d\n", config->bNumInterfaces);
printf("bConfigurationValue: %d\n", config->bConfigurationValue);
printf("iConfiguration: %d\n", config->iConfiguration);
printf("bmAttributes: %x\n", config->bmAttributes);
printf("MaxPower: %d\n", config->MaxPower);
for (i = 0; i < config->bNumInterfaces; i++)
print_interface(&config->interface[i]);
}
int print_device(struct usb_device *dev)
{
usb_dev_handle *udev;
char str[100];
int ret, i;
udev = usb_open(dev);
if (udev) {
if (dev->descriptor.iManufacturer) {
ret = usb_get_string_simple(udev, dev->descriptor.iManufacturer, str, sizeof(str));
if (ret > 0)
{
printf("Manufacturer is %s\n",str);
}
}
if (dev->descriptor.iProduct) {
ret = usb_get_string_simple(udev, dev->descriptor.iProduct, str, sizeof(str));
if (ret > 0)
{
printf("Product is %s\n",str);
}
}
}
if (udev)
usb_close(udev);
printf("Possible configurations are %x\n",dev->descriptor.bNumConfigurations);
sleep(2);
for (i = 0; i < dev->descriptor.bNumConfigurations; i++)
print_configuration(&dev->config[i]);
return 0;
}
int htod( const char* str )
{
int decimal;
sscanf( str, "%x", &decimal);
return decimal;
}
void set_data(struct usb_device *dev)
{
ctrlmsg_param param;
param.requesttype= 0;
param.request=0;
param.value=0;
param.index=0;
param.bytes=10;
param.size=0;
param.timeout=5000;
usb_control_msg(dev, param.requesttype, param.request, param.value, param.index, param.bytes, param.size, param.timeout);
printf("error is %s\n",strerror(errno));
return;
}
int main(int argc, char *argv[])
{
struct usb_bus *bus;
struct usb_device *dev;
if(argc != 3)
{
printf("Error in number of arguments\n");
printf("Usage:./usb_info <vendor id> <product id>\n");
exit(0);
}
vendor_id=htod(argv[1]);
product_id=htod(argv[2]);
printf("initializing USB library\n");
usb_init();
printf("Finding Buses and Devices\n");
usb_find_busses();
usb_find_devices();
for (bus = usb_get_busses(); bus; bus = bus->next) {
for (dev = bus->devices; dev; dev = dev->next) {
if ((dev->descriptor.idProduct == product_id) && (dev->descriptor.idVendor == vendor_id)){
printf("Found device with produxt id %x and vendor id %x\n",product_id,vendor_id);
print_device(dev);
set_data(dev);
print_device(dev);
}
}
}
return 0;
}
Regards,
Sandeep
I think that you mean usb_control_msg() is returns an error code for "bad descriptor". Please clarify if this is incorrect.
USB control transfers have some very specific formatting rules, and if the packet you are forming is sent to any compliant device, it will return a request error / stall on the bus.
You are sending the control transfer:
bmRequestType = 0x00
bRequest = 0x00
wValue = 0x0000
wIndex = 0x0000
wSize = 0x0000
this should be interpreted by the USB device as a GET_STATUS request, so wLength is required to be 2, and bmRequestType needs to have the top bit set, indicating this is an IN direction request (from the host's point of view). This is all from Chapter 9 of the USB specification 1.1/2.0/3.1 available at www.usb.org.
The parameter char *bytes (your param.bytes) also needs to be an address/pointer in the call you are making.
A good standard control transfer to test with would be:
bmRequestType = 0x80
bRequest = 0x06
wValue = 0x0001
wIndex = 0x0000
wSize = 0x0008
This request will return the first 8 bytes of the Device Descriptor, it is valid for every USB device, in all states.
The other transfer types (bulk, interrupt) don't have these strict formatting rules, and can be an easier place to start. I'd imagine you have already moved past this issue, since the question has been posted for quite a while, but maybe this response will still help someone else.