How to reprogram electronics microchips? - gps

I recently have bought a GPS tracker, and it comes with the option of cutting of your engine by reducing the flow of oil to the engine. I want to know if its possible to access the programming/code used in this microprocessor, or in any microprocessor in any electronic. For instance if i want to know hoy my t.v remote control was programmed, could i access its microprocessor and see how did they program it? Although my main concern is with the GPS tracker, and they way its programmed. Also, can i reprogram it? Is this possible? if not, can i still see hoy did they programmed it. How can i do this??
I really have no idea in this topic, thanks for the help.

Related

Is there any open hardware microcontroller?

Is there any open hardware microcontroller?. I can't find something about this.
I mean microcontroller which i can buy from vendors or somewhere and i can download and see full scheme of it. And this information enough to emulate it. something like it.
I think they opened up the code for the propeller yes? and you can get an msp430 clone on opecores or an arm2 on opencores as well as the or1k and 2k, plus a myriad of other open source cores there and elsewhere (just google it). The lm32 is open, and the mico8 is maybe, certainly can be used on a lattice part. But you can certainly find cores like that from each of the fpga/cpld vendors, tuned for and likely free on their platforms. Plus what is it the 68hc11 there are free and or for purchase cores, probably 8051s, etc. And of course there is the cortex-m1, not open but if you wanted a microcontroller in source form to implement on your platform.
The propeller is probably the closest to what you are looking for.
I am not sure what you mean with "open hardware microcontroller". For professionals it's much better to buy a microcontroller or a microcontroller design (ARM for example). Hobbyists usually don't have access to a fab and the required tooling to create their own ASIC.
If you're interested in implementations for FPGAs on the other hand, you should check out the site http://opencores.org/projects where you can find (among other things) different open-source processors.
For what it's worth, SPARC is fully "open", both in it's early conception, and then again later in life by Sun. I think short of some big-iron stuff (that's gradually been taken over by x86), it's basically dead. Maybe you could revive it?

Control Computer Fans Objective-C

Does anyone know of any way to programmatically control the RPMs of a Mac's fans? I briefly checked the Apple Dev site, but couldn't find anything. I'm guessing it's not as easy as:
[fans faster];
I'm wondering how smcFanControl achieves this. Am I right to assume that the "smc" in "smcFanControl" stands for System Management Controller?
Update:
smcFanControl source code is released under GLP license! ^_^ Oh, yeah! Free knowledge!
You are correct on two counts: SMC does stand for "System Management Controller", and fooling around with it isn't as simple as [fans faster]. Programming the SMC requires knowledge of the firmware and some down-and-dirty hardware device driver programming. You probably have to talk to the manufacturer just to get the specs, and if you do, you're not going to be able to program it in Objective C. Alas, you're probably better off trying to control smcFanControl using AppleScript :)
this answer may not able to help. I don't have Mac so I don't know how it works, just tell some basics.
Generally, a computer FAN speed control is handled by SuperIO chip or BMC(bus management controller) chip.
if ur board using a SuperIO, then it is very hard to modify the FAN speed since the speed adjustment algorithm is fixed (fused) inside the chip.
if the board using BMC or similar solution, it will use Firmware to control the speed. most the firmware is upgrade-able by special tool.
above solutions will provide hardware level fan speed control, but the OS level can not change the speed.
I suppose the smcFancontrol in Mac is not a command to change the FAN speed, but able to enable "smart FAN speed control" function.

How do I control a motor wirelessly?

I am a ME undergrad and am designing an implant device that requires programming knowledge. I honestly have no idea how to get started and am looking for advice. Basically what I need is a way to control a stepper motor. Stepper motor's use steps (pulses) to rotate the gear head. Now this motor I'm using needs 20 steps to revolve once. I need to be able to control the # of steps I want in a day per say. The motor I'm purchasing comes with an encoder which I'm guessing connects to the circuit board. Now what I want to do is have an external control (like a remote control for a toy)that can set these rates. I don't know anything about radio transmitters, or how to program the circuit board to do this for me. Any help would be appreciated, or books I can look into, websites, or tutorials. Thanks.
There are many ways of solving this problem, but it is more of a systems engineering question than a programming question; until you know what the system looks like, there is no way of determining what parts will be implemented in software. More details would be required to provide a specific answer.
For example what are the security/safety considerations?
What wireless technology do you need to use? e.g. RF or IR, if RF then licensing may be an issue, and that may vary from country to country. You could use BlueTooth, ZigBee, or even WiFi, but these technologies are probably more expensive and complex than necessary for such a simple application. If IR then is immunity from interference from TV remotes or PC IrDA ports or similar required?
If the commands/signals from the remote are complex you will probably need both the remote and the motor driver to incorporate a micro-controller and software. On the other hand if you just need increase/decrease functions then it would be entirely possible to implement the remote functionality you describe without any processing at all (depending on teh communication technology you choose).
What is the motor encoder for? Stepper motors do not normally need an encoder since the controller can simply count steps executed in either direction to determine position. Is the encoder incremental or absolute? If it is incremental, then it is certainly not needed; if it is absolute than it may be useful if you need to know the exact position of the motor on power-up without having to perform an initialisation or requiring end-stop switches.
You mentioned a "circuit board"; what hardware do you already have? What does it do? Do you have documentation for it? If it is commercially available, can you provide a link so we can see the documentation?
As you can see you have more system-level design issues to solve before you even consider software implementation, so the question is not yet ready to be answered here on SO. I suggest you seek out your university's EE department and team-up with someone with electronics expertise do design a complete system, then consider the software aspects.
Well worth taking a look at the Microchip site:
http://www.microchip.com/forums/f170.aspx
They produce microcontrollers that can be programmed to do exactly what you require (and a lot more).

Permanent DOS Attacks - Anyone Knowledgeable?

So, I'm looking into Permanent DOS attacks for a class, and I'm having a hard time coming up with concrete examples. There's a lot of information about Phlashing (flashing firmware to either brick the device, or put malicious firmware in its place, for those of you who don't know the term) but I'd like to have a broader set of examples.
That being said, there has to be a way to write code that will do something like wear out disk arms, right? Something that will have the disk seek to the end of the disk, then back to the front, on and on. Anyone have an example of how that would be accomplished? Is there some way to specify where to track to on a disk in C (similar to traversing to a certain point in a file, but for the entire HDD!)? If not, I guess there's always trying to force a file's location on the disk... which seems like less fun trying to accomplish. Again, can you do something like that programmatically?
If anyone has any insight into these types of attacks, or any good resources for me to check into, I'd appreciate it. Maybe you read a story about it on Slashdot a few years back? Let me know! The more info I can gather, the less likely I'll be forced to kill time during my talk by bricking my router in the class :) I'm not made of money OR routers!
Seems like these would primarily be limited to physical attacks and social engineering ("To enable your computer's hidden turbo function, remove the cover and pry this part). But:
Adjust screen refresh rates to insane values to blow older CRTs
Monkey with ACPI fan, charge, or battery controls if possible to cause overheating or battery failure.
Overwrite every rewritable storage device of every kind attached to any bus. Discover and overwrite any IDE, USB, etc... device you know the flash updater details for.
Of course nothing is permanent. You can replace the hard drive, BIOS chips, CPU, motherboard, memory, etc...
Although it is mostly fictional, the halt and catch fire operation would be a very convenient and permanent DOS attack.
Steve Gibson (google his name) has a paper he wrote a few years back about protocol-level vulnerabilities in TCP/IP. Some of it is still pertinent today.
Socially engineer the power company or ISP to turn off service at the location in question.
Many devices in the computer today have their own firmwares, including but not limited to CPU, DVD, HDD, VGA, motherboard (BIOS) etc. Most of these devices also have a way of updating their respective firmwares. Which can also be used to brick them pretty efficiently. Although this does require an individual approach to every device, often using privileged instructions and undocumented interfaces.
It's possible for a virus to do this. I seem to recall an actual virus doing this back in the day, but can't find anything to back that up.
I was able to find an article where the author has a conversation with the VP from Western Digital wherein he states a program could potentially access a hard drive's firmware causing such a DOS attack:
There are back doors if you will that allow us to get into places that the operating system can't go through the IDE connector
There used to be a few viruses that could cause old CRT monitors to break. They could cause invalid sync signals out the VGA point that would be too high in frequency for the video sweep. I also remember a few that would use bad sector flagging to draw images on the old versions of Scandisk (we are talking early 90’s or older.) I don't remember and of the names or have any references, but they used to be quite annoying.
Fortunately better circuits, memory protection, API abstraction have made such attacked very difficult to impossible.

What are some ideas for an embedded and/or robotics project?

I'd like to start messing around programming and building something with an Arduino board, but I can't think of any great ideas on what to build. Do you have any suggestions?
I show kids, who have never programmed, or done any electronics before, to make a simple 'Phototrope', a light sensitive robot, in about a day. It costs under £30 (GBP) including Arduino, electronics and off-the-shelf mechanics. If folks really get into mobile robots, the initial project can grow and grow (which I feel is part of the fun).
There are international robot competitions which require relatively simple mechanics to get started, e.g. in the UK http://www.tic.ac.uk/micromouse/toh.asp
Ultimate performance require specially built machines (for lightness) , but folks would get creditable results with an Arduino Nano, the right electronics, and a couple of good motors.
A line following robot is the classic mobile robot project. The track can be as simple as electrical tape. Pololu have some fun videos about their near-Arduino 3PI robot. The sensors are about £1, and there are a bunch of simple motor+gearbox kits from lots of places for under £10. Add a few £ for motor control, and you have autonomous robot mechanics, in need of programming! Add an Infrared Remote receiver (about £1), and you can drive it around using your TV remote. Add a small solar cell, use an Arduino analogue input to measure voltage, and it can find the sun. With a bit more electronics, it can 'feed' itself. And so it gets more sophisticated. Each step might be no more than a few hours to a few days effort, and you'll find new problems to solve and learn from.
IMHO, the most interesting (low-cost) competitions are maze solving robots. The international competition rule require the robot to explore a walled maze, usually using Infrared sensors, and calculate their optimal route. The challenges include keeping track of current position to near-millimeter accuracy, dealing with real world's unpredictably noisy environment and optimising straight-line speed with shortest distance cornering.
All that in 16K of program, and 1K RAM, with real-time interrupt handling (as much as 100K interrupts/second for some motor systems), sensor sampling, motor speed control, and maze solving is an interesting programming challenge. (You might make it 'easy' with 32K of program, and 2K RAM :-)
I'm working on a 'constrained' robot challenge (based on Arduino) so that robot performance is mainly about programming rather than having a big budget.
Start small and build up to something more complex. Control servos. Blink LEDs. Debounce inputs. Read analog sensors. Display text on an LCD. Then put it together.
Despite the name, I like the "Evil Genius" book for PIC microcontrollers because of the small, easily digestible projects that tend to build on one another. It is, of course, aimed at PIC programmers rather than the Arduino, but the material covered will be useful no matter what you're developing on.
I know Arduino is trendy right now, but I also like the Teensy++ development board because of its low price-point ($24), breadboard-compatible PCB, relatively high pin count, Linux development environment, USB connectivity, and not needing a programmer. Worth considering for smaller projects.
If you come up with something cool, let me know. I need an excuse to do something fun :)
Bicycle-related ideas:
theft alarm (perhaps with radio link to a base station which is connected to a PC by Ethernet)
fancy trip computer (with reed switch or opto sensor on wheel)
integrate with a GPS telematics unit (trip logging) with Ethernet/USB download of logged data to PC. Also has an interesting PC programming component--integrate with Google Maps.
Other ideas:
Clock with automatic time sync from:
GPS receiver
FM radio signal with embedded RDS data with CT code
Digital radio (DAB+)
Mobile phone tower (would it require a subscription and SIM card for this receive-only operation?)
NTP server via:
Ethernet
WiFi
ZigBee (with a ZigBee coordinator that gets its time from e.g. Ethernet or GPS)
Mains electricity smart meter via ZigBee (I'm interested now that smart meters are being introduced in Victoria, Australia; not sure if the smart meters broadcast the time info though, and whether it requires authentication)
Metronome
Instrument tuner
This reverse-geocache puzzle box was an awesome Arduino project. You could take this to the next step, e.g. have a reverse-geocache box that gives out a clue only at a specific location, and then using physical clues found at that location coupled with the next clue from the box, determine where to go for the next step.
You could do one of the firefighting robot competitions. We built a robot in university for my bachelor's final project, but didn't have time to enter the competition. Plus the robot needed some polish anyway... :)
Video here.
Mind you, this was done with a Motorola HC12 and a C compiler, and most components outside the microcontroller board were made from scratch, so it took longer than it should. Should be much easier with prefab components.
Path finding/obstacle navigation is typically a good project to start with. If you want something practical, take a look at how iRobot vacuums the floor and come up with a better scheme.
Depends on your background and if you want practical or cool. On the practical side, a remote control could be a simple starting point. It's got buttons and lights but isn't too demanding.
For a cool project maybe a Simon-style memory game or anything with lights & noises (thinking theremin-style).
I don't have suggestions or perhaps something like a line follower robot. I could help you with some links for inspiration
Arduino tutorials
Top 40 Arduino Projects of the Web
20 Unbelievable Arduino Projects
I'm currently developing plans to automate my 30 year old model train layout.
A POV device could be fun to build (just google for POV Arduino). POV means persistence of vision.